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Computational simulation of natural phenomenon is currently attracting increasing 

interest in applied mathematics and computational physics. Mathematical software for 

simulation is limited by the availability, speed, and parallelism of high-performance 

computing. To improve the performance and efficiency of some numerical techniques, 

a step-by-step approach to mathematical software coding is needed to build robust 

parameter-oriented problems. Therefore, this article aims to present and apply the 

Adomian decomposition algorithm coded by the MAPLE 18 software package for the 

solutions of nonlinear fractional-order differential equations in applied physics and 

engineering sciences. The present technique is used without linearization or slight 

disturbance of nonlinear terms, which confirms the strength, accuracy, and simplicity of 

the algorithm. The two test problems are considered for different initial conditions and 

the solutions obtained show that the Adomian decomposition algorithm is fast, easy, 

stable in good agreement with analytical techniques and that a good computational 

approach to fractional-order value problems arising in applied mathematics and 

engineering sciences. 
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1. Introduction  

In the past two decades, the study and 

analysis of fractional derivatives of ordinary 

differential equations, partial differential 

equations, systems of differential equations and 

integrodifferential equations have attracted 

more attention in the interpretation of natural 

phenomena of linear or nonlinear modeling 

science. Applications of fractional calculus are 

used in many fields such as electrical networks, 

control theory of dynamical systems, probability 

and statistics, electrochemistry, physical 

chemistry, optics, and signal processing can be 

successfully modeled using linear or non-linear 

fractional differential equations. Fractional 

derivatives have been applied to many physics’ 
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problems such as the frequency-dependent 

damping behavior of materials, the motion of a 

large thin plate in Newtonian fluids, and 

contraction and expansion functions for elastic 

materials and many applied mathematics 

sciences [1- 4]. 

In this article, we consider and present 

analytical solutions to time-fractional 

differential equation of the form: 

 

{

𝑑𝛼𝑦

𝑑𝑡𝛼
+
𝑑𝑦

𝑑𝑡
− 𝛾𝑦𝜑 = 𝑔(𝑡),

0 <  𝛼 < 1 ,
𝜑 > 1     

                          (1) 

 

with the following initial conditions: 

  This work is licensed under a Creative Commons Attribution 4.0 International License.  
 

https://djes.info/index.php/djes
mailto:faladekazeem2013@gmail.com
https://djes.info/index.php/djes/article/view/1027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Falade K. Iyanda, Adesina K. Adio, Nuru Muazu, Raifu S. Ajayi, Abdullahi Muhammad/ Diyala Journal of Engineering Sciences Vol (15) No 3, 2022: 94-105 

95 

 

𝑦(𝑡0) = Ω =

{
 
 

 
 𝑠𝑖𝑛 (

𝑘

𝜋
)

𝑐𝑜𝑠 (
𝑘

𝜋
)

𝑙𝑜𝑔 (
𝑘

𝜋
) 

      1 ≤  𝑘 ≤ 5       (2)   

Where 𝛼 fractional order of the equation, 𝜑 

degree of the equation, 𝛾 inverse of the degree 

of the equation, 𝑔(𝑡) given function, Ω constant 

parameter, and 𝑘 is an integer. 

 In recent studies, several researchers have 

done great works on the fractional derivative 

and its applications in physical sciences such as 

[5] obtained approximate analytical solutions of 

the nonlinear fractional KdV–Burgers equation, 

[6] presented analytical solution of time 

fractional two component evolutionary system 

of order 2 by residual power series method, [7] 

employed residual power series method for time 

fractional Schrodinger equations, construction 

of fractional power series solutions to fractional 

Boussinesq equations using residual power 

series method was presented by [8], [9] applied 

homotopy perturbation method to time 

fractional diffusion equation with a moving 

boundary condition, [10] application of 

Fractional variational homotopy perturbation 

iteration method and its application was used to 

solve fractional diffusion equation, [11] 

presented non perturbative analytical solutions 

of the space and time fractional Burgers 

equations, [12] proposed discretization schemes 

for fractional order differentiators and 

integrators, [13] proposed Trustin transform 

method to obtain discrete approximation of 

fractional order differentiator, [14] applications 

of fractional calculus to Newtonian mechanics 

analysis, [15] presented a fully discrete spectral 

method for the nonlinear time fractional Klein-

Gordon equation, [16] discussed existence and 

uniqueness of solutions of initial value problems 

for nonlinear fractional differential equations, 

[17] discussed and employed a reliable 

algorithm of homotopy analysis method for 

solving nonlinear fractional differential 

equations, [18] used collocation method for the 

numerical solution of fractional differential 

equations, [19] proposed efficient chebyshev 

spectral methods for solving multi term 

fractional orders differential equations and [20] 

obtained equilibrium points, stability and 

numerical solutions of fractional order predator 

prey and rabies models, [21] applied Adomian 

decomposition method for solving fractional 

differential equations, [22] used Adomian 

decomposition method for a type of fractional 

differential equations, [23] presented a  novel  

multistep  generalized differential transform 

method for solving fractional order  Lu  chaotic  

and  hyper-chaotic  systems, an expansion 

iterative technique for handling fractional 

differential equations using fractional  power  

series scheme proposed by [24] and Authors 

[25] applied homotopy perturbation Elzaki 

transform for the numerical solutions of time-

fractional Navier-Stokes equations. 

 Obtaining analytical and approximate 

solutions to fractional differential equations is 

an important role in the understanding several 

models, except for a limited number of applied 

equations with difficulty in finding their 

analytical solutions. Therefore, the fundamental 

goal of this paper is to formulate three steps 

algorithm using Adomian decomposition 

method for finding approximate solutions to the 

nonlinear fractional-order nonhomogeneous 

differential equation (1) coupled with variation 

in initial conditions (2). 

In the literature, there are several definitions 

of a fractional derivative of order  𝛼 > 0. In this 

paper, we consider the most commonly used 

definition of the Caputo derivative of order 𝛼 as 

 

{

𝐼𝛼𝑦(𝑡) =

1

Γ(𝑚 − 𝛼)
∫ (𝑡 − 𝜂)𝑚−𝛼−1𝑦(𝜂)𝑑𝜂,             (3)
𝑡

0

 

 

Caputo fractional derivative allows 

traditional initial and boundary conditions to be 

included in the formulation of the problem. 

From properties 𝐷𝛼and 𝐼𝛼 which leads to  

 

𝐷𝛼𝑡𝛽 =
Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛼)
𝑡𝛽−𝛼 ,      𝛽 ≥ 𝛼      (4)   

 

Where 𝐷𝛼 is Caputo derivative operator of order 
𝛼 
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         𝐼𝛼𝑡𝛽 =
Γ(𝛽 + 1)

Γ(𝛽 + 𝛼 + 1)
𝑡𝛽+𝛼 ,                (5)   

 

2. Adomian decomposition method (ADM) 

The Adomian decomposition method [26-

29] is a powerful tool for solving linear or 

nonlinear equations and authors [30-31] have 

proved the convergences of Adomian 

decomposition method. We consider a nonlinear 

differential equation which can be decomposed 

into the following form 

 

𝐿(𝑦) + 𝑅(𝑦) + 𝑁(𝑦) = 𝑔,                      (6) 
 

Where 𝐿 is the highest order differential 

operator,  𝑅(𝑦)  is the remainder of the linear 

part, 𝑁(𝑦)  represents the nonlinear part and 𝑔 

is a given function. In general, operator 𝐿 is 

invertible. If we take 𝐿−1 on both sides of 

equation (6) which equivalent expression can be 

given 
𝑦 = −𝐿−1𝑅(𝑦) − 𝐿−1𝑁(𝑦) + 𝐿−1𝑔

+ Ψ,                 (7) 
 

Where Ψ  satisfies  𝐿Ψ = 0 and the initial 

conditions. If L is the second-order 

derivative, 𝐿−1 is the two-fold definite integral. 

For the Adomian decomposition method, thus, 

the solution 𝑦 is expressed in terms of a series 

form: 

𝑦 = ∑𝑦𝑛

∞

𝑛=0

                           (8) 

And the nonlinear term 𝑁(𝑦) is represented by 

the Adomian polynomials 𝐴𝑛 as follows: 

𝑁(𝑦) = ∑  𝐴𝑛                      (9) 

∞

𝑛=0

 

 

Equation (9) depends on 𝑦0, 𝑦1, ⋯ . 𝑦𝑛 and can 

be represented as  

 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑁 (∑𝜆𝑘𝑦𝑘

∞

𝑘=0

)]

𝜆=0

 ,

𝑛 = 0,1,2,⋯                (10) 
 

For more simplification, the first three terms 

of the Adomian polynomials as goes as follows 

 

{
 
 
 

 
 
 

𝐴0 = 𝑁(𝑦0),

𝐴1 = 𝑦1𝑁
(1)(𝑦0),

𝐴2 = 𝑦2𝑁
(1)(𝑦0) +

1

2!
𝑦1
(2)𝑁(2)(𝑦0)

𝐴3 = 𝑦3𝑁
(1)(𝑦0) + 𝑦1𝑦2𝑁

(2)(𝑦0) +
1

3!
𝑦1
(3)𝑁(3)(𝑦0)

⋮
                                                          (11)   

 

Hence, equation (6) becomes 

 

∑𝑦𝑛

∞

𝑛=0

= −𝐿−1𝑅∑𝑦𝑛

∞

𝑛=0

− 𝐿−1∑𝐴𝑛

∞

𝑛=0

+ 𝐿−1𝑔

+Ψ,                                     (12)     
 

And the Adomian’s technique is equivalent to 

the following relation which defines as follows: 

{
  
 

  
 

𝑦0 = 𝐿
−1𝑔 + Ψ,

𝑦1 = 𝐿
−1𝑅(𝑦0) − 𝐿

−1(𝐴0),

𝑦2 = 𝐿
−1𝑅(𝑦1) − 𝐿

−1(𝐴1),

𝑦3 = 𝐿
−1𝑅(𝑦2) − 𝐿

−1(𝐴2),
⋮

𝑦𝑛−1 = 𝐿
−1𝑅(𝑦𝑛−1) − 𝐿

−1(𝐴𝑛−1)

        (14) 

 

2.1 Five-step computational algorithm 

In this section, we formulate a five-step 

computational algorithm using the MAPLE 18 

software package by coding the Adomian 

decomposition method discussed in section (2) 

which goes thus: 

Restart: 

Step 1:  
𝑤𝑖𝑡ℎ𝑝𝑙𝑜𝑡𝑠: 
𝐷𝑖𝑔𝑖𝑡𝑠 ≔ ℝ+; 
𝑁 ≔ ℝ+;  
𝜑 ≔ ℝ+; 
𝑔 ≔ 𝑔(𝑡); 
𝑦[0] ≔ Ω; 

𝐴[0] ≔ (𝑦[0] + 𝑖𝑛𝑡(𝑔, 𝑡)); 

𝑚 ≔ 𝛼 +
1

2
; 

Step 2: 

for n from 0 to N do 

𝐿 ≔ −𝑑𝑖𝑓𝑓(𝐴[𝑛], 𝑡); 
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𝑅 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
1

Γ(𝑚 − 𝛼)
∗ 𝑖𝑛𝑡((𝑡 − 𝜂)𝑚−𝛼−1

∗ 𝑠𝑢𝑏(𝜂 = 𝑡, 𝐿), 𝜂
= 0… 𝑡), 𝑎𝑠𝑠𝑢𝑚𝑒

= 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ;  

𝐻 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
−𝑖𝑛𝑡(𝑅 + 𝛾 ∗ 𝐴[𝑛]𝜑, 𝑡),
𝑎𝑠𝑠𝑢𝑚𝑒 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

) ; 

𝐴[𝑛 + 1] ≔ 𝑒𝑥𝑝𝑎𝑛𝑑(𝐻); 
end do; 
 

Step 3: 

𝑺𝒐𝒍(𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎) ≔ 𝑠𝑢𝑚(𝐴[𝑘], 𝑘 = 0. . 𝑁 + 1); 
for t from 0 by 0.2 to 1 do 

𝑦[𝑡] ≔ 𝑒𝑣𝑎𝑙𝑓(𝑒𝑣𝑎𝑙(𝑺𝒐𝒍(𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎))); 

end do; 
𝑦[𝑡][2𝐷𝑝𝑙𝑜𝑡]
≔ 𝑝𝑙𝑜𝑡([𝑐𝑎𝑠𝑒 1, 𝑐𝑎𝑠𝑒 2, 𝑐𝑎𝑠𝑒 3, 𝑐𝑎𝑠𝑒 4, 𝑐𝑎𝑠𝑒 5]],
= 0…1, 𝑐𝑜𝑙𝑜𝑟[𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑏𝑙𝑎𝑐𝑘, 𝑦𝑒𝑙𝑙𝑜𝑤], 𝑎𝑥𝑒𝑠
= 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒 = nonlinear fractional 𝐼𝑉𝑃𝑠); 

 

3. Numerical experiment 

To apply this proposed algorithm, we 

consider two examples of the form: 

Example 1. Consider nonlinear fractional-order 

nonhomogeneous IVP of the form 

{
 
 

 
 
𝑑𝛼𝑦

𝑑𝑡𝛼
+
𝑑𝑦

𝑑𝑡
−
1

2
𝑦2 = 𝑡2 +

Γ(3)

Γ (
5
2)
𝑡
1
2

𝛼 =
1

2
 

 

wth initial condition: 

𝑦(0) = Ω =

{
 
 

 
 𝑐𝑜𝑠 (

𝑘

𝜋
)

𝑠𝑖𝑛 (
𝑘

𝜋
)

𝑙𝑜𝑔 (
𝑘

𝜋
)

         1 ≤  𝑘 ≤ 5      

Applying the algorithm proposed in the last 

section for the simulation for example 1 as 

stated below:  

Restart: 

Step 1:  
𝑤𝑖𝑡ℎ𝑝𝑙𝑜𝑡𝑠: 
𝐷𝑖𝑔𝑖𝑡𝑠 ≔ 10; 
𝑁 ≔ 2;  
𝜑 ≔ 2; 

𝛼 ≔
1

2
; 

𝑘 ≔ [1,2,3,4,5] 

𝑔 ≔ 𝑡2 +
Γ(3)

Γ (
5
2)
𝑡
1
2; 

𝑦[0] ≔ [𝑐𝑜𝑠 (
𝑘

𝜋
) , 𝑠𝑖𝑛 (

𝑘

𝜋
) , 𝑙𝑜𝑔 (

𝑘

𝜋
)] ; 

𝐴[0] ≔ (𝑦[0] + 𝑖𝑛𝑡(𝑔, 𝑡)); 

𝑚 ≔ 𝛼 +
1

2
; 

Step 2: 

for n from 0 to N do 

𝐿 ≔ −𝑑𝑖𝑓𝑓(𝐴[𝑛], 𝑡); 

𝑅 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
1

Γ(𝑚 − 𝛼)
∗ 𝑖𝑛𝑡((𝑡 − 𝜂)𝑚−𝛼−1

∗ 𝑠𝑢𝑏(𝜂 = 𝑡, 𝐿), 𝜂
= 0… 𝑡), 𝑎𝑠𝑠𝑢𝑚𝑒

= 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ;  

𝐻 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
−𝑖𝑛𝑡(𝑅 + 𝛾 ∗ 𝐴[𝑛]𝜑, 𝑡),
𝑎𝑠𝑠𝑢𝑚𝑒 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

) ; 

𝐴[𝑛 + 1] ≔ 𝑒𝑥𝑝𝑎𝑛𝑑(𝐻); 
end do; 
 

Step 3: 

𝑺𝒐𝒍(𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎) ≔ 𝑠𝑢𝑚(𝐴[𝑘], 𝑘 = 0. . 𝑁 + 1); 
for t from 0 by 0.2 to 1 do 

𝑦[𝑡] ≔ 𝑒𝑣𝑎𝑙𝑓(𝑒𝑣𝑎𝑙(𝑺𝒐𝒍(𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎))); 

end do; 
𝑦[𝑡][2𝐷𝑝𝑙𝑜𝑡]
≔ 𝑝𝑙𝑜𝑡([𝑐𝑎𝑠𝑒 1, 𝑐𝑎𝑠𝑒 2, 𝑐𝑎𝑠𝑒 3, 𝑐𝑎𝑠𝑒 4, 𝑐𝑎𝑠𝑒 5]],
= 0…1, 𝑐𝑜𝑙𝑜𝑟[𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑏𝑙𝑎𝑐𝑘, 𝑦𝑒𝑙𝑙𝑜𝑤], 𝑎𝑥𝑒𝑠
= 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒 = nonlinear fractional 𝐼𝑉𝑃𝑠) 

Output: Figure 1, Figure 2, and Figure 3 and 

Table 1 respectively. 
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  Figure 1. Depict the simulated solutions obtained when initial conditions are cosine constant parameters for  1 ≤

 𝑘 ≤ 5 

 

 
Figure 2. Depict the simulated solutions obtained when initial conditions are sine constant parameters for  1 ≤  𝑘 ≤

5 

 
Figure 3. Depict the simulated solutions obtained when initial conditions are logarithm constant parameters for 1 ≤  𝑘 ≤

5 
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                                  Table 1: Numerical solutions for Example 1 for various initial conditions 

t 
k 𝑐𝑜𝑠 (

𝑘

𝜋
) 𝑠𝑖𝑛 (

𝑘

𝜋
) 𝑙𝑜𝑔 (

𝑘

𝜋
) 

 

 

0 

1 0.9497657154 0.3129617961 -1.144729886 

2 0.8041098283 0.5944807684 -0.451582705 

3 0.5776661773 0.8162731084 -0.046117597 

4 0.2931852324 0.9560556571 0.2415644747 

 5 -0.020751613 0.9997846621 0.4647080260 

 

 

0.2 

1 1.218004208 0.4590939223 -0.837443893 

2 1.034031472 0.7800962334 -0.297493126 

3 0.7602800719 1.0491576411 0.082803265 

4 0.4374035000 1.2260884244 0.3813181456 

5 0.6292784801 1.2826118502 0.6292784801 

 

 

0.4 

1 1.770959975 0.8178054980 -0.315846407 

2 1.527715571 1.2041520670 -0.041071614 

3 1.179535827 1.5474450590 0.4036464869 

4 0.7927131969 1.7818094360 0.7284753371 

5 0.4300329934 1.8580344120 1.0192607340 

 

 

0.6 

1 2.7048505721 1.4511210370 0.4256725341 

2 2.3717929131 1.9416919190 0.5949817489 

3 1.9096334162 2.3985110870 0.9636333938 

4 1.3420256900 2.7198860560 1.3420256900 

5 0.9930896713 2.8259391840 1.7034352750 

 

 

0.8 

1 4.2209763663 2.4858893580 0.4256725341 

2 3.7451685950 3.1457456910 1.4469028710 

3 3.1017955590 3.7829768090 1.8654020430 

4 2.4454266250 4.2426830140 1.3420256900 

5 1.9014446320 4.3963354010 2.8217493702 

 

 

1.0 

1 6.708242521 4.1525524890 1.4500867840 

2 5.987613902 5.1005945150 2.7488365860 

3 5.036496607 6.0443473150 3.2935750560 

4 3.952030994 6.7414604690 4.0954690180 

5 3.342336701 6.9774439670 4.6311944600 

Example 2. Consider nonlinear fractional-

order nonhomogeneous IVP of the form 
{

𝑑𝛼𝑦

𝑑𝑡𝛼
−
𝑑𝑦

𝑑𝑡
−
1

2
𝑦2 = 𝑡4 

𝛼 =
1

2
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wth initial condition: 

𝑦(0) = Ω =

{
 
 

 
 𝑐𝑜𝑠 (

𝑘

𝜋
)

𝑠𝑖𝑛 (
𝑘

𝜋
)

𝑙𝑜𝑔 (
𝑘

𝜋
)

         1 ≤  𝑘 ≤ 5      

Applying the algorithm proposed in the last 

section for the simulation for example 2 as 

stated below:  

Restart: 

Step 1:  
𝑤𝑖𝑡ℎ𝑝𝑙𝑜𝑡𝑠: 
𝐷𝑖𝑔𝑖𝑡𝑠 ≔ 10; 
𝑁 ≔ 2;  
𝜑 ≔ 2; 

𝛼 ≔
1

2
; 

𝑘 ≔ [1,2,3,4,5] 
𝑔 ≔ 𝑡4 ; 

𝑦[0] ≔ [𝑐𝑜𝑠 (
𝑘

𝜋
) , 𝑠𝑖𝑛 (

𝑘

𝜋
) , 𝑙𝑜𝑔 (

𝑘

𝜋
)] ; 

𝐴[0] ≔ (𝑦[0] + 𝑖𝑛𝑡(𝑔, 𝑡)); 

𝑚 ≔ 𝛼 +
1

2
; 

Step 2: 

for n from 0 to N do 

𝐿 ≔ −𝑑𝑖𝑓𝑓(𝐴[𝑛], 𝑡); 

𝑅 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
1

Γ(𝑚 − 𝛼)
∗ 𝑖𝑛𝑡((𝑡 − 𝜂)𝑚−𝛼−1

∗ 𝑠𝑢𝑏(𝜂 = 𝑡, 𝐿), 𝜂
= 0… 𝑡), 𝑎𝑠𝑠𝑢𝑚𝑒

= 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ;  

𝐻 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
𝑖𝑛𝑡(𝑅 + 𝛾 ∗ 𝐴[𝑛]𝜑, 𝑡),

𝑎𝑠𝑠𝑢𝑚𝑒 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
) ; 

𝐴[𝑛 + 1] ≔ 𝑒𝑥𝑝𝑎𝑛𝑑(𝐻); 
end do; 
 

Step 3: 

𝑺𝒐𝒍(𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎) ≔ 𝑠𝑢𝑚(𝐴[𝑘], 𝑘 = 0. . 𝑁 + 1); 
for t from 0 by 0.2 to 1 do 

𝑦[𝑡] ≔ 𝑒𝑣𝑎𝑙𝑓(𝑒𝑣𝑎𝑙(𝑺𝒐𝒍(𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎))); 

end do; 
𝑦[𝑡][2𝐷𝑝𝑙𝑜𝑡]
≔ 𝑝𝑙𝑜𝑡([𝑐𝑎𝑠𝑒 1, 𝑐𝑎𝑠𝑒 2, 𝑐𝑎𝑠𝑒 3, 𝑐𝑎𝑠𝑒 4, 𝑐𝑎𝑠𝑒 5]],
= 0…1, 𝑐𝑜𝑙𝑜𝑟[𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑏𝑙𝑎𝑐𝑘, 𝑦𝑒𝑙𝑙𝑜𝑤], 𝑎𝑥𝑒𝑠
= 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒 = nonlinear fractional 𝐼𝑉𝑃𝑠) 

Output: Figure 4, Figure 5, and Figure 6 and 

Table 2 respectively. 

 

 

 

 

  Figure 4. Depicts numerical simulation for various initial conditions for cosine functions for 1 ≤  𝑘 ≤ 5 
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Figure 5. Depicts numerical simulation for various initial conditions for sine functions for 1 ≤  𝑘 ≤ 5 

       

 
 

Figure 6. Depict the simulated solutions obtained when initial conditions are logarithm constant parameters 

 for 1 ≤  𝑘 ≤ 5 

 

                                  Table 2: Numerical solutions for Example 2 for various initial conditions 

t k 
𝑐𝑜𝑠 (

𝑘

𝜋
) 𝑠𝑖𝑛 (

𝑘

𝜋
) 𝑙𝑜𝑔 (

𝑘

𝜋
) 

 

 

0 

1 0.9497657154 0.31296179615 - 1.1447298869 

2 0.8041098283 0.59448076840 - 0.4515827056 

3 0.5776661773 0.81627310840 - 0.0461175974 

4 0.2931852324 0.95605565711 0.24156447471 

 5 -0.020751613 0.99978466211 0.46470802601 

 

 

0.2 

1 1.0189319730 0.32049784586 - 1.0441298429 

2 0.8536567183 0.62155678890 - 0.4359463627 

3 0.6032333568 0.86733233521 - 0.0459014434 
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4 0.2998052740 1.02614345610 0.24607548191 

5 -0.020664933 1.07644973312 0.48126581121 

 

 

0.4 

1 1.0839557920 0.32881615846 - 0.9496242929 

2 0.9004002796 0.64762677181 - 0.4203910285 

3 0.6279252496 0.91547738831 - 0.0442031909 

4 0.3072961480 1.09203117410 0.25166245380 

5 -0.019080079 1.14851692610 0.49775502661 

 

 

0.6 

1 1.1627421641 0.34611453109 - 0.8398578034 

2 0.9589839452 0.68381021342 - 0.3963299888 

3 0.6626322846 0.97559689821 - 0.0340883091 

4 0.3237183252 1.17178128610 0.26606616221 

5 -0.009056119 1.23518379210 0.52371422481 

 

 

0.8 

1 1.2795957050 0.39062683550 - 0.6955402624 

2 1.0517422660 0.75028808391 - 0.3477705053 

3 0.7273924173 1.07017382220 0.00116561785 

4 0.3671990212 1.28979336010 0.30715025930 

5 0.0262101683 1.36153383410 0.57831639291 

 

 

1.0 

1 1.4757611510 0.49618569948 - 0.4944171713 

2 1.2177815410 0.88361444090 - 0.2474740536 

3 0.8585783483 1.23848098891 0.09233499780 

4 0.4713977064 1.48741157710 0.40812812491 

5 0.1177114856 1.56961838410 0.69678728951 

4. Results and discussion 

To demonstrate the accuracy and efficiency 

of the analytic-numerical technique presented, 

two examples are considered and from the 

computational simulation results and graphs 

obtained, we observed as follows: 

i. The proposed algorithm demonstrated 

fast convergence with no linearization of 

the nonlinear fractional 

nonhomogeneous differential equation 

(1) considered.  

ii. Example 1. The highest solutions were 

obtained when the initial condition was 

𝑐𝑜𝑠 (
1

𝜋
)  (red) and the least solutions are 

recorded 𝑠𝑖𝑛 (
1

𝜋
) (red) and 𝑙𝑜𝑔 (

1

𝜋
)  

(red) (Figure 1, Figure 2 and Figure 3 

respectively). 

iii. Example 2. The lowest solutions were 

obtained when the initial condition was 

𝑐𝑜𝑠 (
5

𝜋
)  (yellow) and the highest 

solutions are recorded 𝑠𝑖𝑛 (
5

𝜋
) (yellow) 

and 𝑙𝑜𝑔 (
5

𝜋
)  (yellow) (Figure 4, Figure 

5, and Figure 6 respectively). 

iv. Every simulation and computation work 

are done using the MAPLE 18 software 

package. 

 

5. Conclusions  

In this paper, Adomian decomposition 

method was successfully coded with the 

MAPLE 18 software package and applied to 

solve nonlinear fractional differential equation 

arises in applied physics and engineering 

sciences. The fractional derivatives described in 

the Caputo sense which is obtained by Riemann-

Liouville fractional integral operator are 

considered to obtain the analytic-numeric 

solutions. Three test case problems are 

considered to demonstrate the efficiency of the 

formulated algorithm and the best results are 

obtained in the third step  𝑦(𝑡) = ∑ 𝑦𝑡
3
𝑡=0 . It is 

concluded that the adomian decomposition 

algorithm is a powerful, efficient, and reliable 
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tool for the analytical solutions of nonlinear 

fractional ordinary differential equations arising 

in applied mathematics. 
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