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This research delves into the evaluation of Deep learning signal constellation 

identification (DL-SCI) algorithms in underwater acoustic communications using 

Orthogonal Frequency Division Multiplexing (OFDM). It distinctly examines at how 

effective the recurrent neural networks (RNNs), particularly, Gated Recurrent Unit 

(GRU) and Long Short-Term Memory (LSTM) algorithms in predicting the signal 

constellation when applied to different underwater acoustic channels characteristics. 

Unlike manual feature selection in machine learning (ML), in this paper, DL-SCI 

exploits the labelled OFDM signals at the transmitter to detect and decode them at the 

receiver. In order to measure their effectiveness performance metrics, Bit Error Rate 

(BER) and parameters derived from the confusion matrix such as accuracy and precision 

are used. The study highlights the importance of utilizing zero cyclic prefix techniques 

which can exploit the inherent bandwidth limitation effectively. Furthermore, when 

examining complexity, it is observed that both GRU and LSTM algorithms require less 

floating-point operations (FLOPS) compared to traditional methods such as Minimum 

Mean Square Error (MMSE) and Least Squares (LS). Interestingly GRU shows 

performance in terms of complexity when compared to LSTM. Moreover, GRU 

outperforms LSTM by achieving a 4 dB improvement for long subcarriers. These results 

emphasize the effectiveness of learning techniques in enhancing performance and 

efficiency in acoustic communications. 
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1. Introduction 

In the field of wireless communication, the 

effectiveness of OFDM systems greatly depends 

on channel estimation methods [1]. Underwater 

acoustic channels have not been recognized yet, 

thus predicting the channel impulse response 

(CIR) is crucial and needs sophisticated 

approaches such as in [2]. Identifying signals 

[3], particularly, in channels with an inherent 

Doppler effect [4], poses a significant challenge 

because of the intricate and ever-changing 

nature of the underwater surroundings. Over the 

years, deep learning, specifically recurrent 
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neural networks (RNNs) have emerged as a 

promising method to improve the dependability 

and precision of signal detection and 

classification tasks [5]. This article explores 

supervised RNN based learning with a focus on 

comparing two architectures; LSTM and GRU. 

The research utilizes acoustic channels to fine 

tune and evaluate the effectiveness of these 

systems. Notably using communications as the 

testing environment adds a unique and 

demanding aspect to this comparative study 

distinguishing it from traditional signal 

constellation research. Through this study we 

aim to shed light on how LSTM and GRU 
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architectures perform in the realm of signal 

constellation, laying the groundwork for 

dependable and effective communication 

systems, in aquatic settings.  

As a result, there is significant attention 

being given to leveraging machine learning 

(ML) algorithms to transform communication 

systems. Communication systems that have 

been in use for a time typically rely on known 

and traditional models [6]. Hence algorithms 

utilized for channel estimation necessitate a 

comprehension of channel statistics. For 

instance, the minimum mean square error 

(MMSE) algorithm. However, machine learning 

(ML) algorithms introduce a data driven 

approach to the realm of communications that 

goes beyond relying on channel statistics [7]. 

This aspect makes ML algorithms highly 

valuable in scenarios where modeling channel 

statistics proves to be challenging. Nevertheless, 

ML necessitates manual feature selection, thus 

DL manifest itself as a promising solution for 

low complexity constellation learning.  

1.1 Contribution 

The contributions of this paper are: 

1. The article examines two known deep 

learning methods, LSTM and GRU in the 

context of processing acoustic signals.  

2. The study investigates the effectiveness of 

LSTM and GRU architectures in channels 

providing insights into their performance 

across various environmental conditions.  

3. The article talks about using a zero cyclic 

prefix, in (OFDM) to enhance 

communication systems. This approach 

has shown to be successful, in 

environments leading to better data 

transmission reliability and bandwidth 

efficiency.  

4. The research paper showcases how 

removing the cyclic prefix in OFDM can 

improve the effectiveness and 

dependability of communication systems, 

tackling the obstacles presented by the 

marine environment.  

5. The study shows that deep learning 

methods, like LSTM and GRU are simpler 

than techniques, in analyzing underwater 

signals. This suggests that using deep 

learning algorithms can make 

constellation learning in settings 

straightforward and efficient. 

1.2 Paper organization 

The paper is organized as follow: the related 

works is presented in section 2. Then, section 3 

presents the adopted system model and related 

background. Next, deep learning-based signal 

constellation is depicted in section 4. After that, 

section 5 shows the proposed DL-Based Signal 

constellation Identification. The simulation 

results are depicted and analysed in section 5. 

Finally, section 7 presents the conclusions. 

 

2. Related works 

This section summarizes research that 

utilizes deep learning algorithms along OFDM 

signals, particularly in the underwater acoustic 

environment.  

Yıldırım, Mahmut [8] introduce an approach 

called PTS AIM, which is based on a Tabu 

Search (PTS) algorithm, for OFDM with All 

Index Modulation (OFDM AIM). The PTS AIM 

method aims to enhance the Bit Error Rate 

(BER) performance by searching for the 

constellation point for each subcarrier. 

Additionally, a signal detection system named 

DeepAIM is proposed, combining a Long Short-

Term Memory (LSTM) algorithm, with a Deep 

Neural Network (DNN). Lastly a novel 

architecture called PTS DeepAIM integrates the 

PTS AIM and DeepAIM approaches. 

Simulation results demonstrate that PTS 

DeepAIM surpasses AIM in both BER 

performance and computation time attributed to 

its design incorporating the PTS based look up 

table and DL based signal detection 

architecture.  

Jebur, Bilal A. et al. [9] explore the 

possibility of creating machine learning 

techniques for channel estimation in 6G 

communications. The suggested algorithm 

combines with frequency division multiplexing 

to remove inter-symbol interference. The article 

investigates the algorithms resilience, intricacy 

and convergence while showcasing the achieved 

outcomes. Furthermore, it delves into the 
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applications of this research, in 

communications. Signal detection with reduced 

complexity based on neural network is 

presented in Ref. [10]. 

Furthermore, Zhang, Yuzhi et al. [11] 

suggest using a deep learning approach to detect 

signals, in UWA Orthogonal time frequency 

space (OTFS) communication. By training a 

network the system can successfully reconstruct 

the transmitted symbols. This method combines 

a network (CNN) with skip connections (SC) 

and a bidirectional long short-term memory 

(BiLSTM) network for signal retrieval. The 

technique leverages information from received 

OTFS signal sequences to train the network for 

detecting signals. Results show that the SC CNN 

BiLSTM based OTFS detection method 

outperforms methods, like 2D CNN, FC DNN 

and conventional signal detection in terms of Bit 

Error Rate (BER).  

Besides, the impact of a specific 

optimization technique known as” early stop” in 

the implementation of the proximal policy 

algorithm within the openai/spinningup library 

is presented in Ref. [12]. The main concept 

behind early termination methods is to assess 

the extent to which the policy changes during 

each update and avoid updates that lead to 

sudden and drastic policy changes. In this 

version of early stop, which is called KLE Stop, 

the updates will be halted if the KL divergence, 

between consecutive updates exceeds a 

predetermined threshold.  

Yufei Liu, Yunjiang Zhao et al. [13] 

introduce a method, for communication using 

binary frequency shift keying and variable 

Doppler frequency hopping based on deep 

transfer learning (DTL). The system employs a 

CNN as the demodulation component of the 

receiver. of estimating the Doppler this 

approach directly demodulates the received 

signal. The DTL first trains the CNN using 

simulated communication signal data. Then 

transfers some convolution layers from a trained 

CNN to the target CNN. The remaining layers 

in the target CNN are initialized randomly. 

Trained using data samples from 

communication scenarios. Throughout training 

the CNN associates frequencies with symbols in 

selected frequency hopping groups via Mel 

spectrograms. Results from simulations and 

experimental data processing demonstrate that 

this proposed system outperforms systems, 

particularly when both transmitter and receiver 

are moving at varying speeds, in water acoustic 

environments. 

Mohammed AS et al. [14] created a 

simulated environment to assess the 

performance of OFDM under various channel 

conditions. To achieve this, different models 

have been utilized. Furthermore, a learning 

technique has been utilized to make an 

estimation of the channel by leveraging data 

from training. Two types of channel models are 

utilized to compare their effectiveness. 

There is an endeavour to employ learning 

techniques in addressing wireless channels 

without requiring real time training is presented 

in Ref. [15]. The outcomes of the simulations 

demonstrate that deep learning models can 

achieve performance to conventional methods 

when there is an adequate number of pilots in 

OFDM systems. Moreover, these models 

exhibit better performance, with a limited 

number of pilots, CP free. 

Chen, Jie and Liu et al. [16] introduce a data 

focused method, for signal separation through 

the use of deep learning technology. It employs 

a bidirectional short-term memory (Bi LSTM) 

technique to analyze the characteristics of a time 

frequency (T-F) mask and proposes a T- F mask 

aware Bi LSTM model for signal separation. By 

leveraging the sparsity of the T-F image the 

developed Bi LSTM network can extract 

features for separation leading to performance in 

separating signals. Notably this approach 

surpasses methods by achieving outcomes in 

multivariate separation and effectively isolating 

signals even when mixed with 40 dB Gaussian 

noise signals. Experimental findings 

demonstrate that this method can ensure a 97% 

guarantee ratio (PSR) with the average 

similarity coefficient for multivariate signal 

separation exceeding 0.8 in high noise 

scenarios. 

A new approach has been introduced in Ref. 

[17]. This study for estimating channels, in 

UWA OFDM systems using learning and 

clustered structure information. Initially a 

cluster identification model employing 
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networks is presented to detect the clusters 

within UWA channels. This method surpasses 

the Page test algorithm in terms of accuracy and 

resilience under low signal to noise ratio 

circumstances. Furthermore, a channel 

estimation technique that considers clusters and 

utilizes distributed sensing is proposed based on 

the cluster detection model. By narrowing down 

the search space for channel delay spread and 

leveraging sparsity among neighbouring OFDM 

symbols, this method helps minimize errors 

caused by noise. Results, from simulations and 

sea trials, indicate that the proposed approach 

outperforms sparse UWA channel estimation 

methods. 

Zhang et al. [18] introduced a new approach 

to make it unnecessary to estimate the CSI. The 

method involves sending two known labels from 

the tag before transmitting data. By analyzing 

the information, in the received signal 

constellation a modulation constrained 

expectation maximization algorithm was 

suggested. This led to the development of two 

detection methods. One method involves 

learning parameters by grouping the labelled 

signals and then using these parameters to 

recover the signals. The second method uses all 

received signals for clustering. Efficient 

initialization techniques are included for both 

algorithms. Simulation results demonstrate that 

these constellation learning methods perform 

similarly to the detector, with CSI. 

To address the classification challenges of 

traditional CNNs, Ref. [19] proposed training on 

phase and quadrature (IQ) samples of OFDM 

signals. They incorporate a dropout layer to 

prevent overfitting and enhance identification 

accuracy. Furthermore, the validation of the 

trained CNN was achieved using datasets with 

modulation modes. The experiments 

demonstrate that their proposed method offers 

accuracy and consistency compared to methods. 

Additionally comprehensive results affirm the 

performance of their approach across datasets. 

Peng, Shengliang et al. [20] explore the 

application of (DL) in modulation classification 

as an aspect in various communication systems. 

DL eliminates the need for feature selection 

thereby simplifying the complexity involved in 

modulation classification tasks. The research 

utilizes two DL models based on networks 

(CNNs); AlexNet and GoogLeNet. Various 

techniques are developed to represent 

modulated signals in grid data formats for CNN 

analysis. The study also investigates how 

different representations impact classification 

performance. Includes comparisons, with 

cumulant based and ML algorithms. 

M. Abdul Aziz et al. [21] suggested a 

detection method using a neural network, for 

OFDM-Index modulation (OFDM-IM). A 

detection approach based on (LSTM) to boost 

the bit error rate (BER) performance of the 

OFDM-IM system was presented. 

 All aforementioned researchers have focused 

on a traditional type of the wireless channels 

with CP-OFDM. In the proposed system, zero 

cyclic prefix is adopted with the OFDM which 

reduce the overhead and offer a bandwidth. In 

addition, two types of real channels have 

investigated to confirm the system reliability.  

3. System model and background 

A scenario of two communication points is 

involved in sharing data over a connection is 

adopted. To prevent any disturbances caused by 

the connection, a method known OFDM is 

conducted. This technique helps prevent 

intersymbol interference (ISI) that might arise 

due to the nature of the connection. 

3.1 OFDM signal generation 

Let us think about the OFDM signal in the 

time domain at time 𝑖 created by applying 

inverse Fast Fourier transform (IFFT) to 𝑋𝑖(𝑘) 
with 𝑁 subcarriers, where 𝑘 is the subcarriers 

index. It is postulated that the signal undergoes 

modulation, through M-ary quadrature phase 

shift keying (QPSK). This signal composite of 

pilots and guard interval defined as a cyclic 

prefix (CP). Although this guard interval is 

important to mitigate the inter-symbol 

interference due to the channel effect, it 

consumes the bandwidth, which is already 

limited in the underwater communications, 

Consequently, the transmitted OFDM vector  

𝑥𝑖 = [𝑥1, ⋯ , 𝑥𝑁]. 
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3.2 Received signal and channel model 

The transmitted signal is sent over a 

multipath fading channel with characteristics 

shown by 

𝑐(𝜏, 𝑡) =∑ℎ𝑙(𝑡)𝛿[𝜏 − 𝜏𝑙(𝑡)]

𝐿−1

𝑙=0

 (1) 

where ℎ𝑙(𝑡) are the path amplitudes, 𝜏𝑙(𝑡) are 

the time-varying path delays and 𝐿 is the total 

number of paths [22]. The path delays 𝜏𝑙 and the 

gains ℎ𝑙, were assumed constant over the frame 

duration 𝑇.  

Once the channel (1) is convolved with the 

transmitted signal, the received signal is given 

as 

𝑦 = [𝑦1, ⋯ , 𝑦𝐾], ∈ ℂ1×𝐾 (2) 

where, 𝐾 is the number of packets, and ℂ refers 

to a set of complex numbers. 

4. DL-Based signal identification 

In this section, two types of RNN algorithms 

have demonstrated superior performance than 

traditional methods of estimating channels and 

neural network paradigms [23], particularly in 

handling extensive input data. Additionally, the 

structural design of these learning algorithms is 

detailed herein. 

4.1 LSTM structure 

The LSTM architecture is an advancement, 

in neural networks especially for handling 

sequences of data. As shown in Figure 1.  

 

 

 
Figure 1. LSTM structure 
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Figure 2. GRU structure 

LSTM essentially involves an interplay of 

gates and memory cells to capture and 

remember long term dependencies [24]. The 

forget gate in (3), driven by a sigmoid function 

σ determines what information to discard from 

the memory cell state, while the input gate in (4) 

decides on information to incorporate. The cell 

state in (5) is then updated by combining the 

decisions from both gates. Finally, the output 

gate in (6) controls which parts of the updated 

cell state are revealed as the output. These 

precise operations have made tools in various 

fields such, as natural language processing, 

speech recognition and time series analysis. The 

LSTM equations can be formulated as [25]: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), �̃�𝑡
= tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡]
+ 𝑏𝑐) 

(4) 

 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡 (5) 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), ℎ𝑡
= 𝑜𝑡 ⊙ tanh(𝐶𝑡) 

(6) 

where 𝑏𝑓, 𝑏𝑖, 𝑏𝑐,and 𝑏𝑜 are the bias parameters 

and 𝑊𝑓, 𝑊𝑖, 𝑊𝑐 , and 𝑊𝑜denote weight 

parameters, ⊙ represents element wise 

multiplications. 

 

4.2 GRU structure 

The Gated Recurrent Unit (GRU) is a type 

of (RNN)network that is great, at capturing 

patterns over time in sequential data [25]. In 

each time step t the update gate 𝑧𝑡 in (7) decides 

the amount of data to keep in the previous 

hidden state ℎ𝑡−1 , see in Figure 2. Additionally, 

the reset gate 𝑟𝑡 in (8) manages how much to 

forget from the state. The potential hidden state 

ℎ̃𝑡 in (9) is then calculated based on the reset 

gate and the current input 𝑥𝑡. Ultimately 

updating the state involves a mix of the hidden 

state ℎ𝑡 in (10) and the potential hidden state, 

determined by the update gate. The GRUs smart 

design allows it to effectively handle long term 

relationships, in data while staying efficient 

computationally. 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (7) 

 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (8) 

 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ⋅ [𝑟𝑡 ⊙ℎ𝑡−1, 𝑥𝑡]) (9) 

 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ℎ𝑡
′  (10) 

 

where 𝑊𝑧, 𝑊𝑟, and 𝑊ℎ are the weight 

parameters. The GRU algorithm architecture is 

promising compared to LSTM due to the 

following reasons: (i) GRUs merge the forget 

and input gates into an update gate reducing 

parameter count and computational complexity 



A.E. Abdelkareem / Diyala Journal of Engineering Sciences Vol (17) No 3, 2024: 1-14 

7 

 

in comparison, to LSTM networks. This 

streamlined approach enables training and 

inference without compromising performance. 

(ii) The update and reset gates found in GRUs 

play a role in controlling the information flow 

and addressing the issue of vanishing gradients 

often encountered in RNNs. This mechanism 

helps maintain stability across sequences 

allowing the network to better grasp 

interdependencies. (iii) GRUs have parameters 

compared to LSTMs making them less 

susceptible to overfitting, which's particularly 

beneficial when working with smaller datasets. 

This feature improves their ability to adapt to 

tasks and areas. 

5. The Proposed DL-Based signal 

constellation identification 

In this section, we briefly talk about the 

development of RNN cells that have 

demonstrated performance compared to 

networks, in handling lengthy input data. 

5.1 Data set 

The data used in this research forms the core 

dataset for training LSTM and GRU deep 

learning models. Both models undergo training 

using the datasets and simulations of sound 

channels, with QPSK modulation to extract 

features for comparative analysis. To predict 

signal identification a crafted dataset is created 

using QPSK modulation to assess the strength of 

the proposed system. Various Signal to Noise 

Ratio (SNR) values from 0 to 50 dB are tested, 

with each modulation symbol consisting of 

25,000 packets for both training and testing. 

With 128 OFDM subcarriers allocated for data 

and an additional 128 subcarriers, for pilot 

signals, the resulting dataset includes 256 

components totalling 512 values representing 

each received packets features. This extensive 

dataset is then fed into the network during 

training or utilized in time to predict signal 

constellations. 

5.2 Offline training 

In Figure 3, the pilots and data get inputted 

into the OFDM transmitter to create a sequence 

of n frames. These frames are sent out after 

undergoing channel convolution processing. 

The transmitted pilots are then used in an LS 

estimator to compute an estimated channel. The 

LS estimation is then utilized as one of the 

inputs, for training the estimators.  

At the front end of the receiver shown in 

Figure 3, there is a stage called preprocessing, in 

which the data is prepared by converting it from 

serial to parallel and applying Fast Fourier 

Transform (FFT). These results, in generating a 

collection of imaginary components, for the data 

packet, which forms the characteristics of the 

received information. These attributes are fed 

into the system to create a pattern. The training 

and testing phases are illustrated in algorithm 1. 

The procedure showcasing how learning (DL) 

networks handle both imaginary values. The DL 

networks can be described using an input vector. 

 

𝑌(𝑛) = [ℜ(𝑌(𝑛)), 𝔍(𝑌(𝑛))]. (11) 

where, 𝑌(𝑛) is a pre-processed received data 

and the transmitted QPSK symbol labels can be 

formulated as: 

𝑆(𝑛) = [𝑒
𝜋

4 , 𝑒
3𝜋

4 , 𝑒
5𝜋

4 , 𝑒
7𝜋

4 ]. (12) 

Algorithm 1 DL-Based signal constellation 

algorithm 

Stage 1: Offline Training 

1. Generate data for the transmitted signal 

which consist (Pilot, subcarriers, labels).  

2. Compute fading channel coefficient 

using (1).  

3. Convert data to packet (pilot and data).  

4. Compute integer FFT for each packet.  

5. Detect the received signal using (2).  

6. Convert 𝒕𝒙 packet and 𝒓𝒙 packet to 

features (target)  

7. Formulate the transmitted packet to labels 

(Target). 

8. Combine data set to construct feature for 

DL algorithm to train the dataset.  

9. Train the network  

10. Save 
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5.3 Online training 

This phase shown in algorithm 2, in this 

phase, the primary focus is, on utilizing learning 

models in time for communication systems. 

During this process neural networks that have 

been trained in algorithm 1 play a role in 

adjusting signal constellations to adapt to the 

changing conditions encountered during data 

transmission. These conditions may involve 

variations in channel characteristics, 

interference and noise levels in such 

environments. Through learning and 

optimization, the online phase aims to improve 

the resilience, reliability and overall efficiency 

of communications using OFDM technology. 

The ultimate objective is to ensure the 

transmission and reception of data packets, in 

unpredictable underwater scenarios. 

 

Algorithm 2 DL-Based signal constellation 

algorithm 

Stage 2: Online Training 

1. Load Trained network.  

2. Convert received packet to feature.  

3. Estimate constellation labels using DL 

classifier.  

4. Convert label to constellation. 

 

  
Figure 3. The proposed system model  

6. Simulation results 

All deep learning parameters and steps are 

depicted in in Table 1. In this simulation, the 

performance of the proposed signal 

identification was investigated over two 

multipath channels. In addition, two factors 

have been considered to measure the severity of 

these channels, delay spread 𝜏𝑙 and its 

magnitude ℎ𝑙. As shown in Table 2, the delay 

spreads were 3.5 ms and 6 ms of channel 1 and 

channel 2, respectively. However, the amplitude 

of the direct path for channel 1 was highest that 

channel 2. Comparison with MMSE and LS to 

check the performance was conducted. The 

length of subcarriers is firstly tested then the 

effect of pilot subcarriers is also investigated.  
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Table 1: Deep learning algorithm setting 

Parameter Value 
Input layer 1 

LSTM or GRU 16 Layers 

Fully connected layer 4 

Softmax layer Softmax layer 

Classification output layer 

 
Table 2: Channels path delays and magnitudes 

Channel 1 Channel 2 

𝜏𝑙(ms) ℎ𝑙(𝑡) 𝜏𝑙(ms) ℎ𝑙(𝑡) 
  0   0.7106 0 0.6529 

0.125 0.5441 0.7500 0.4406 

0.625 0.3252 1.1250 0.3869 

1.000 0.2011 1.3750 0.3105 

2.625 0.1766 2.1250 0.2699 

3.000 0.1398 3.7500 0.1737 

3.500 0.0449 4.1250 0.1481 

- - 5.7500 0.0752 

- - 6.0000 0.0536 

6.1 Bit error rate (BER) 

In Figure 3, the pilots and data get inputted 

into the OFDM 

In Figure 4 (a), when the SNR is set at 30 dB 

for example the BER of the GRU model is 

around 0.0001 while the LSTM model shows a 

higher BER of about 0.001. This indicates that 

with 64 subcarriers the GRU model performs 

better in terms of error rate compared to the 

LSTM model, under these conditions. In Figure 

4 (b) it can be observed that at signal to noise 

ratios (around 28 dB and above) all the models 

show low bit error rates (below 0.0001). The 

effectiveness of all the models gets better as the 

SNR increases. The data indicates that the GRU 

model using 128 subcarriers performs better in 

terms of BER compared to the LSTM, MMSE 

and LS estimators, at 30 dB. Nonetheless the 

performance gaps narrow down when 

considering 64 subcarriers. The GRU model 

outperforms LSTM, MMSE and LS estimators, 

in terms of achieving a lower Bit Error Rate 

(BER) at an Eb/N0 value of around 30 dB in 

both scenarios involving 64 and 128 subcarriers. 

The improvement in BER with the GRU model 

is more pronounced for 64 subcarriers compared 

to 128 subcarriers. For example, at 30 dB the 

BER for the GRU model could be 0.0001 for 64 

subcarriers and about 0.000028, for 128 

subcarriers. It seems like boosting the quantity 

of subcarriers from 64, to 128 could enhance the 

BER performance across all models (GRU, 

LSTM, MMSE and LS). This might be due to 

the fact that having more subcarriers enables 

increased data transmission and improved 

channel estimation. However, the advantage of 

subcarriers appears to be less noticeable, for the 

GRU model. Even though the BER gets better 

with 128 subcarriers the difference compared to 

64 subcarriers is not as significant. The analysis 

indicates that the GRU model shows 

performance, in both situations, with 64 and 128 

subcarriers. It seems to excel especially with 64 

subcarriers.  

Figure 5 compares the results obtained from 

the preliminary analysis of DL algorithms on 

channel 2. From this figure, it can be seen that 

the GRU algorithm has lower BER than LSTM 

in all pilot subcarriers densities 𝑁𝑝 = 25%𝑁, 

𝑁𝑝 = 50%𝑁 and 𝑁𝑝 = 𝑁, respectively. After 

analyzing the figure, it is evident that the GRU 

algorithm (represented by the dotted blue line) 

shows a notable improvement of 4 dB, in BER 
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performance compared to the LSTM algorithm 

(depicted by the dotted red line) in situations 

with high pilot density. This difference becomes 

especially noticeable when there is a cluster of 

pilot subcarriers, for estimating the channel. 

This discovery differs from what was found in 

[9], where having a pilot density decreased 

performance in terms of BER. The design of the 

GRU could work well for making use of a set of 

data for estimating channels. Its gating system 

might help in extracting the channel details, 

from numerous pilot subcarriers. 

 
(a) 64 subcarriers (b) 128 subcarriers 

Figure 4. BER performance comparison of Deep learning algorithms (GRU and LSTM) with MMSE and LS over 

channel 1 at CP=0 with different subcarriers 

 

Figure 5. BER performance comparison of GRU and LSTM over channel 2 at CP=0, 𝑁 = 128 and different pilot 

subcarriers 𝑁𝑝 =
𝑁

4
, 𝑁𝑝 =

𝑁

2
 and 𝑁𝑝 = 𝑁 

Figure 6 presents the performance 

comparison between two DL algorithms (GRU 

and LSTM) over different channel conditions at 

CP=0 and CP=16. In channel 1 the GRU and 

LSTM models showed accuracy and precision. 

Both models achieved, around 99.834% (GRU) 

and 99.85% (LSTM) accuracy at cyclic prefix 0. 

Precision values remained consistently high for 

all classes in both models. Moving on to channel 

2 both GRU and LSTM models displayed 

performance as seen in channel 1. At cyclic 

prefix 0 both models reached 99.85% accuracy. 

Both channels (1 and 2) demonstrated 

performance with the GRU and LSTM models 

across cyclic prefixes. Any slight differences in 

metrics between the channels are likely due to 

varying channel characteristics, noise levels, 

interference or environmental factors. 

Nonetheless overall both models proved to be 

effective, across channels and cyclic prefixes 
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showcasing their resilience and dependability 

under circumstances. The differences, in 

performance between the channels with cyclic 

prefix 16 resemble those seen with cyclic prefix 

0. There are variations in accuracy and possibly 

in precision, values for certain categories. These 

variances may stem from differences, in channel 

delay spread. 

 

6.2 Confusion matrix 

In this section, we contrast the effectiveness 

of GRU and LSTM models by examining the 

confusion matrices acquired for channel 1 and 

channel 2, at CP=0. These matrices offer 

insights into how each model classifies data 

allowing for a thorough assessment of their 

performance, in various channel settings. As 

demonstrated in Table 3 for channel 1, the GRU 

model showed performance, with True Positive 

rates for all classes effectively categorizing 

samples in each class. The LSTM model also 

performed well although it had TP rates than the 

GRU. Both models had False Positive and False 

Negative rates indicating their capability to 

reduce misclassifications. In general, the 

confusion matrices for channel 1 indicate that 

both the GRU and LSTM models are effective, 

in this channel setting. In comparison to channel 

1 the GRU model, on channel 2 depicted in 

Table 4 experienced a drop in rates for certain 

categories, specifically class 1 and class 4. On 

the hand the LSTM model showed true positive 

rates across all categories demonstrating its 

strong performance. Although both models had 

positive and false negative rates the GRU model 

had slightly higher false positive rates than the 

LSTM model. The data from channel 2s 

confusion matrices indicates that the LSTM 

model performs better than the GRU model, in 

this particular channel setting.

 

Figure 6. Accuracy and precision comparison under different channel conditions and different CP length 

Table 3: Confusion matrix summary for channel 1, CP=0 @30dB 

Model Class True Positive (TP) False Positive (FP) False Negative (FN) True Negative (TN) 

GRU 

1 

2 

3 

4 

7522 

7503 

7516 

7447 

4 

3 

3 

2 

3 

6 

4 

1 

4471 

4467 

4467 

4467 

LSTM 

1 

2 

3 

4 

7438 

7425 

7472 

7448 

7 

4 

2 

3 

4 

4 

2 

3 

4461 

4467 

4464 

4469 
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Table 4: Confusion matrix summary for channel 2, CP=0 @30dB 

Model Class True Positive (TP) False Positive (FP) False Negative (FN) True Negative (TN) 

GRU 

1 

2 

3 

4 

7421 

7362 

7499 

7691 

1 

7 

4 

0 

9 

0 

5 

2 

7691 

7421 

7472 

7421 

LSTM 

1 

2 

3 

4 

7175 

7273 

7148 

7101 

77 

57 

25 

3 

58 

14 

41 

30 

7101 

7175 

7160 

7175 

 
Figure 7. Computational complexity comparison of ML estimator and LMMSE 

 

6.3 Complexity analysis 

LSTM unit is comprised of three gates. The 

input gate, forget gate and output gate along, 

with a memory cell. These gates control how 

information moves within the unit deciding 

whether to keep or discard data as time 

progresses. On the hand GRU units are less 

complex, than LSTM units featuring two gates 

combined into one, the reset gate and update 

gate. Additionally, GRU units include a state 

that gets updated at each time interval. Figure 7 

shows that GRU and LSTM models are usually 

less complex than MMSE models, which 

require 𝒪(𝑁3) floating point operations for 

matrix inversion and vector multiplications. 

Although MMSE models have shown 

effectiveness in most scenarios, their 

demanding computational needs can limit 

scalability and practicality in band-limited 

environments, especially underwater. This is 

why the straightforward nature of GRU and 

LSTM architectures makes them choices for 

situations where maintaining a balance, between 

efficiency and model performance’s crucial. 

LSTM units are often seen as intricate due to 

their gates and memory cell. The use of memory 

cells and multiple gating mechanisms leads to 

increased complexity which can be represented 

as 𝐶𝐿𝑆𝑇𝑀 ≈ 𝒪(4ℎ𝑠
2𝑁) [25]. On the hand GRU 

units are viewed simpler than LSTM because 

they have fewer parameters and computations 

𝐶𝐺𝑅𝑈 ≈ 𝒪(3ℎ𝑠
2𝑁) The absence of a memory cell 

and the integration of gates into a single update 

gate help reduce the complexity of the GRU 

structure. Despite its design the GRU has 

demonstrated performance compared to LSTM 

in various tasks such as sequence modelling. 

GRUs are particularly preferred in situations 

where there are constraints, on resources or 

when quicker training is desired. 
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7. Conclusions 

In summary, this research has offered 

insights, into how well deep learning-based 

signal constellation methods perform in using 

OFDM for acoustic communications. By 

comparing the (GRU) and (LSTM) algorithms 

on two acoustic channels with different delay 

spreads several important discoveries have been 

made. To start with the use of zero cyclic prefix 

techniques has proven to be very beneficial 

leading to reductions in overhead and saving 

bandwidth which is usually limited in the reality 

of underwater environment. Additionally, 

examining complexity has shown that both 

GRU and LSTM algorithms require floating 

point operations than traditional methods such 

as Minimum Mean Square Error (MMSE) and 

Least Squares (LS). Notably GRU shows a 

performance in terms of complexity compared 

to LSTM. Furthermore, when it comes to Bit 

Error Rate (BER) performance GRU 

outperforms LSTM by achieving a 4 dB gain. 

This is due to the gating architecture of the GRU 

network.  For these reasons, the GRU is more 

effective at ensuring signal reliability and 

efficiency, in acoustic communications. By 

tackling issues, like weakened signals and 

restricted bandwidth these methods provide 

opportunities to boost the dependability and 

performance of communication networks. 

Subsequent studies could delve deeper into 

using learning for acoustic-based 

communications concentrating on overcoming 

more obstacles such as the Doppler effect 

compensation and fine-tuning system 

operations. 
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