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Visually impaired individuals often face significant challenges in navigating their 

environments due to limited access to visual information. To address this issue, a 

portable, cost-effective assistive tool is proposed to operate on a low-power embedded 

system such as the Jetson Nano. The novelty of this research lies in developing an 

efficient, lightweight video captioning model within constrained resources to ensure its 

compatibility with embedded platforms. This research aims to enhance the autonomy 

and accessibility of visually impaired people by providing audio descriptions of their 

surroundings through the processing of live-streaming videos. The proposed system 

utilizes two distinct lightweight deep learning modules: an object detection module 

based on the state-of-the-art YOLOv7 model, and a video captioning module that 

utilizes both the Video Swin Transformer and 2D-CNN for feature extraction, along 

with the Transformer network for caption generation. The goal of the object detection 

module is for providing real-time multiple object identification in the surrounding 

environment of the blind while the video captioning module is to provide detailed 

descriptions of the entire visual scenes and activities including objects, actions, and 

relationships between them. The user interacts via a headphone with the proposed 

system using a specific audio command to trigger the corresponding module even object 

detection or video captioning and receiving an audio description output for the visual 

contents. The system demonstrates satisfactory results, achieving inference speeds 

between 0.11 to 1.1 seconds for object detection and 0.91 to 1.85 seconds for video 

captioning, evaluated through both quantitative metrics and subjective assessments.  
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1. Introduction  

The major influence of visual information 

on human thinking and decision-making has 

dramatically increased the importance of visual 

data in our daily lives. Vision impairment, also 

known as visual impairment, refers to a 

reduction in the ability to see, which leads to 

difficulties that cannot be corrected by 

conventional means like glasses or contact  

lenses [1]. Vision impairment encompasses 

various degrees of visual loss. While some 
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individuals may suffer from a total loss of sight, 

others may retain the ability to perceive light, 

discern shapes, or have no visual perception at 

all. Visually impaired individuals encounter 

various challenges in their everyday activities 

depending on their degree of visual impairment. 

According to the World Health Organization 

(WHO) in 2017, approximately 253 million 

individuals were living with visual impairment, 

with 36 million among them classified as 

completely blind [2]. This emphasizes the 

critical necessity to enhance the quality of life 

https://djes.info/index.php/djes
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for people with visual impairments. Assistive 

technology plays a vital role in achieving this 

goal. 

Various assistive technologies have been 

previously introduced to aid visually impaired 

individuals in navigation. Traditional assistive 

tools like white canes allow users to feel the way 

around and specially trained dogs help them 

reach some places. Although these are great 

inventions for the visually impaired, they have 

limitations. Canes require constant physical 

contact with things all the time, and dogs require 

extensive training and care. Undoubtedly, 

technological advances such as GPS and 3D 

audio systems have improved the lives of 

visually impaired individuals around the world. 

However, these technologies have limited 

functionality, focusing on basic tasks such as 

measuring distance and providing limited 

awareness of the surrounding environment          

[3, 4]. These limitations highlight the need for 

more comprehensive assistive technologies that 

can provide users with reasonable assistance and 

a deeper understanding of the surroundings. 

With significant advancements in deep 

learning algorithms, particularly in computer 

vision, techniques such as object detection [5], 

image captioning [6], and video captioning [7] 

have become essential tools for enhancing 

accessibility for people with visual impairments 

after converting visual information to speech. 

Object detection can help visually impaired 

people in navigating their surroundings safely 

and confidently by providing real-time 

identification of objects and potential hazards. 

By describing everyday objects such as chairs, 

tables, food items, and other personal 

belongings, object detection allows visually 

impaired people to move through their 

environment with more independence. The most 

popular object detection algorithms are mainly 

based on the CNN architecture [8, 9] including 

R-CNN (Region-Based Convolutional Neural 

Networks) [10], SSD (Single Shot MultiBox 

Detector) [11], and YOLO (You Only Look 

Once) [12]. The R-CNN and its extensions (Fast 

R-CNN and Faster R-CNN) are a two-stage 

detector, that works by starting with region 

proposal generation followed by the 

classification of these regions to identify 

objects. Faster R-CNN improved the process by 

using a Region Proposal Network (RPN) to 

generate proposals with less computational 

time. This leads to increased speed and accuracy 

in detecting objects. While SSD and YOLO are 

a single-stage detector, they integrate region 

proposal and object classification into a single 

process. This integration allows them to achieve 

high detection speeds with lower computational 

overhead. This single-shot approach allows 

YOLO to achieve real-time object detection 

speeds while maintaining reasonable accuracy. 

SSD is known for its balance between accuracy 

and speed. However, the real-time performance 

of YOLO has motivated researchers to refine 

and release several versions of the model. For 

example, YOLOv5 is known for its speed and 

accuracy, and it has been successfully used in 

various computer vision applications such as 

autonomous vehicles [13], video surveillance 

[14], and drone navigation [15]. Building on this 

progress, YOLOv7 [16] was released, offering 

significant improvements in both speed and 

accuracy. It also excels at detecting multiple 

objects within a single image or video frame, 

making it a valuable choice for complex object 

detection tasks [17, 18]. Furthermore, the study 

in [19] has shown that YOLOv7 outperforms 

Faster R-CNN in terms of accuracy, in addition 

to offering real-time performance. 

On the other hand, image/video captioning 

provides another way for helping visually 

impaired people by creating detailed 

descriptions of entire scenes and activities 

including objects, actions, and relationships 

between them. Video captioning, in particular, 

offers distinct advantages over image captioning 

due to its ability to provide a more dynamic and 

comprehensive description of visual content. 

Unlike static images, videos capture temporal 

information, allowing for richer contextual 

understanding and more detailed descriptions of 

dynamic scenes and actions [7]. The early works 

of video captioning are based on a predefined 

template in sentence generation. Based on visual 

concepts, template-based methods identify 

triplets of subject, verb, and object in videos. 

Then, a predefined template is filled with the 

recognized triplets to generate the output 

caption. However, the details of generated 
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captions in these methods are restricted by the 

structures of predefined language templates, 

which limits the variety and creativity of the 

generated captions [20]. To overcome these 

limitations, the application of deep learning 

techniques has emerged as a promising 

approach in video captioning and other related 

tasks. Numerous existing works [21-25] are 

based on the well-known encoder-decoder 

framework. Typically, a video encoder 

translates video frames or clips into feature 

vectors using 2D/3D CNN, while a decoder 

converts these vectors into relevant sentences 

based on Recurrent Neural Network (RNN) 

[26]. Though 3D-CNNs are efficient at 

capturing motion features in videos, they tend to 

be time-consuming and often incompatible with 

real-time processing. Additionally, RNNs, 

although traditionally used for sequence 

modeling tasks such as video captioning, are 

prone to issues like vanishing gradients and 

have difficulty managing long-range 

dependencies [27]. 

However, most existing work in this area 

focuses on software solutions without 

considering the challenges of implementing 

such algorithms on hardware with limited 

computational resources. Current research does 

not adequately address the application of video 

captioning techniques on hardware platforms 

such as the Jetson Nano, which offers a cost-

effective, portable, and low-power solution. To 

overcome these limitations, we have developed 

a lightweight model specifically designed for 

constrained environments using the Jetson 

Nano. In this work, we incorporate more 

advanced deep neural architectures, including 

the Video Swin Transformer [28] with the 

convolutional EfficientNet [29] for video 

feature extraction and the Transformer network 

[30] for description generation. The Video Swin 

Transformer offers a unique approach to 

processing video data by using a shifted window 

mechanism, enabling efficient computation and 

improved scalability. This model has achieved 

state-of-the-art performance in video 

recognition tasks across multiple datasets [27, 

28, 31]. The EfficientNet architecture has 

several advantages over other CNNs including 

high accuracy, compound scaling, and reduced 

model parameters [30, 32]. These advantages 

make it a valuable choice for various computer 

vision tasks, especially with resource 

limitations. In Natural Language Processing 

(NLP), the Transformer architecture has 

outperformed other models with its self-

attention mechanism, providing superior 

parallelization and robustness in managing long 

sequences. Both the Video Swin Transformer 

and the Transformer network consistently 

achieve state-of-the-art results in terms of speed 

and accuracy for video recognition and NLP 

tasks [27]. Hence, these features motivated us to 

utilize these advanced architectures instead of 

3D-CNNs and RNNs.   

Visually impaired individuals face 

significant challenges in independently 

navigating their environments due to limited 

access to visual information. Existing assistive 

technologies do not effectively utilize video 

captioning on resource-constrained hardware 

like the Jetson Nano, limiting their portability 

and accessibility. Current solutions often lack 

the capability to provide fast, detailed audio 

feedback about visual scenes, including objects, 

actions, and their relationships. There is a need 

for a cost-effective and portable solution that 

can process live video streams to deliver 

descriptive audio feedback, enhancing 

autonomy for visually impaired users. In this 

paper, we employ YOLOv7 object detection and 

a new video captioning method to create an 

assistive tool designed to support visually 

impaired people. By combining these advanced 

technologies, our system can provide audio 

descriptions of objects, scenes, and activities, 

enabling a more comprehensive understanding 

of their surroundings. The main contributions of 

this paper are listed as follows: 

• Development of a scalable, efficient, and 

cost-effective framework for video 

processing aimed at assisting visually 

impaired individuals in enhancing their 

daily lives. 

• Combining of video captioning and 

object detection techniques utilizing 

state-of-the-art deep learning models, 

including YOLOv7, EfficientNet, Video 
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Swin Transformer, and Transformer 

architecture. 

• Extensive experimentation and 

comparison of different methods and 

models to evaluate speed, accuracy, and 

computational requirements. 

• Creation of a simple prototype of the 

proposed system with a detailed analysis 

of the system architecture and hardware 

components. 

The rest of this paper is organized as 

follows: Section 2 reviews related work in video 

captioning and object detection, highlighting 

existing solutions and their limitations. In 

section 3, a detailed description of the proposed 

framework is provided. Section 4 presents the 

experimental setup and results, including 

performance metrics and comparisons with 

different methods and models. The potential 

limitation of this work is summarized in section 

5. Finally, section 6 concludes the paper with 

suggestions for future research. 

2. Related work and limitations 

This section examines recent literature on 

computer vision-based solutions for assisting 

the visually impaired. V. Kumar et al. [1] 

presented a method for assisting blinds based on 

an image captioning technique. The integration 

of ResNet50-LSTM networks is used in this 

method as an encoder-decoder framework. 

Similarly, the study in [3] used another image 

captioning technique for describing visual 

content based on the VGG16-LSTM pipeline. 

However, both methods lack an attention layer 

in their deep architectures, which is important 

when processing sequential data such as video 

and text. To address this issue, M. Sarkar et al. 

[33] adopted a deep learning-based image 

captioning method that incorporates an attention 

mechanism. The deep model is based on the pre-

trained Inception-ResNet network for feature 

extraction, followed by a Gated Recurrent Unit 

(GRU) network for caption generation. In the 

research [34], the authors presented a method 

for assisting blinds based on describing a single 

video frame through an image captioning 

technique. The model processes one frame for 

every 50 frames to reduce complexity. 

Additionally, the authors incorporated a method 

to measure the distance of detected objects from 

the camera using YOLOv5 and a triangular 

similarity approach. However, the captioning 

technique relied on a conventional architecture, 

using VGG16 [35] for feature extraction and 

LSTM [36] for word generation. Furthermore, a 

better performance of this model could have 

been achieved by incorporating an attention 

mechanism in the deep neural architecture. A. 

Bodi et al. [37] developed a video description 

system to aid blind and low-vision individuals. 

The system combines multiple pre-trained 

models, including YOLOv3 for object detection 

and a pre-trained image captioning model. 

However, the system is primarily designed to 

process video frames from a pre-recorded media 

file instead of directly from a camera, which 

could limit its real-time applications. The study 

in [38], proposed a deep learning model to assist 

the blind in recognizing environmental 

information using video captioning techniques. 

The system is built with an encoder-decoder 

framework using the VGG16 network for 

encoding and RNN-LSTM combination for 

caption decoding. The MSVD [39] dataset is 

customized into five categories to train the 

proposed model. However, an attention 

mechanism is missing in the adopted system in 

addition to the use of traditional models. 

Notably, the studies referenced above share 

a common limitation: none of them employ a 

specific hardware implementation for the 

proposed system, limiting their practical use and 

evaluation in real-world scenarios. On the other 

hand, P. Shameem et al. [40] implemented a 

guidance system for blind individuals via a 

smartphone application that uses an image 

captioning technique based on the Inceptionv3-

LSTM framework. The user can capture images 

with their mobile phone, which are then sent to 

a Python server connected to the user's phone to 

run the deep learning model. The server 

processes the images and sends the 

corresponding audio descriptions back to the 

user's mobile phone. The work in [4] adopted a 

similar smartphone-server architecture to 

perform object detection on streaming video 

captured from the user's phone. However, this 
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approach requires a stable internet connection to 

send images to the server for processing, which 

can cause delays and interruptions in areas with 

poor connectivity. It also raises privacy and 

security concerns due to the transmission of 

potentially sensitive user data to an external 

server. A. Papanai and H. Kaushik [41] 

developed wearable IoT devices that transform 

information extracted from a camera mounted 

on the user into audio signals to aid the mobility 

of the blind based on object detection and lane 

detection techniques. The system uses the pre-

trained Yolov5 model for object detection, 

while lane detection is primarily based on the 

Canny edge detection method. The 

implementation and evaluation of the system 

were carried out on a Jetson Nano board. The 

system introduced by K. Safiyaet et al. [42] aids 

the user in navigating independently through the 

use of image captioning techniques based on the 

VGG16-LSTM pipeline. The system deployed 

on a Raspberry Pi board using Keras and 

TensorFlow frameworks. However, the 

hardware limitations of the Raspberry Pi make 

it challenging to deploy larger deep learning 

models, which affects both real-time usability 

and system accuracy. B. Arystanbekov et al. [2] 

developed an assistive tool for visually impaired 

individuals using a pre-trained image captioning 

model in the Kazakh language. According to the 

evaluation results, the system achieved real-time 

response for captioning the captured image via 

a USB camera mounted on the user's head, 

which was connected to a Jetson Xavier NX 

8GB board. 

Upon reviewing the relevant works 

proposed by various studies, it's clear that while 

several investigations offer different solutions to 

specific challenges, some limitations still exist, 

leaving substantial gaps yet to be explored as 

follows: 

1- Lack of temporal feature processing: 

previous works often focus on image 

captioning techniques applied to 

individual frames, neglecting the 

analysis of temporal or motion features 

across a sequence of frames. This limits 

the ability to capture dynamic changes 

and context within video sequences, 

which is crucial for accurate video 

description in hardware 

implementations. 

2- Conventional description generation 

methods: many studies utilize 

traditional architectures such as 

VGG16-LSTM for description 

generation. These methods do not use 

more advanced and effective 

architectures like Transformers, which 

can provide improved performance in 

capturing complex patterns and 

dependencies in video data. 

3- Insufficient experimentation and 

evaluation: existing approaches 

frequently lack comprehensive 

experimentation and detailed evaluation 

of their performance, especially for the 

computational cost. This inadequacy 

affects the reliability and generalization 

of their results, leaving a need for more 

thorough analysis and validation. 

Thus, this study aims to address these 

limitations by adopting a more robust approach 

with hardware implementation that combines 

advanced video description and object detection 

techniques. 

3. Proposed methodology 

The proposed system is an assistive tool 

designed to process audio commands and video 

frames, providing users with audio-based 

feedback. Figure 1 illustrates the system 

architecture and the interconnection between the 

hardware components. The system consists of 

two deep learning modules which are video 

captioning and object detection. These modules 

are accessed by the audio commands of the user. 

The hardware component of the proposed 

system consists of a Jetson Nano board 

(equipped with 128 NVIDIA CUDA cores and 

4 GB of memory), a USB camera, USB 

Headphones (earphones/microphone), a USB 

Wi-Fi dongle, and a power source.  
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Figure 1. System architecture overview 

The system begins by booting up the Jetson 

Nano, initializing the camera, and loading all 

necessary models into memory. The system 

prompts the user with an audio message saying, 

"Please choose between 'describe' or 'detect'," to 

select either the video captioning or object 

detection mode. The audio command of the user 

is translated into text data through speech 

recognition software. In case of an invalid 

command, the system prompts the user to re-

enter the command. Upon receiving a valid 

command (e.g. describe or detect) the 

corresponding module is activated (see Figure 

2). The camera captures video frames, which are 

then served as input data for the model's 

processing. Subsequently, the resulting output is 

converted from text to audio format using the 

gTTS (google text to speech) package, and 

transmitted to the user through the earphones as 

illustrated in Fig. 2. Notably, gTTS supports a 

wide range of languages which allows users to 

receive descriptions in their native languages. 

The Jetson Nano was selected as the embedded 

platform for this project due to its balance of 

performance, power efficiency, and 

affordability. The key advantages involve its 

capability to run deep learning models with 128 

NVIDIA CUDA cores and 4 GB of memory, 

making it suitable for real-time processing in a 

low-power setting. Its compact size and low cost 

also make it an ideal choice for deploying 

assistive technologies in resource-constrained 

environments. Notably, the code and trained 

models are available at 

https://github.com/vision-research/vid-desc-jet.
 

 

Figure 2. Framework for the hardware and software architecture of the assistive system 
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3.1 Video captioning module 

The proposed video captioning module is 

mainly based on the model architecture from our 

previous work [27], which utilizes the encoder-

decoder framework, with model compression 

and acceleration. Figure 3 shows the structural 

design of the proposed video captioning 

method. Our captioning module involves two 

distinct components including a video encoder 

and a caption decoder. The architecture of the 

proposed video captioning model integrates the 

Video Swin Transformer, 2D-CNN, and 

Transformer network to generate accurate and 

detailed captions. Initially, the 2D-CNN 

(EfficientNet) extracts spatial features from 

individual video frames, representing each 

frame as a high-level feature vector that captures 

detailed visual information. Subsequently, the 

Video Swin Transformer processes sequences 

of frames to capture temporal dynamics and 

motion features, analyzing the context and 

relationships between frames to provide a 

comprehensive understanding of the video. 

Finally, the Transformer network combines the 

spatial and temporal features from the previous 

components to generate the final captions, 

creating coherent and contextually relevant 

descriptions of the visual content. 

3.1.1 Video encoder 

 To generate accurate and informative video 

descriptions, it is necessary to extract visual 

features that capture a high level of video 

understanding, including spatial features (i.e. 

appearance and static scene) along with 

temporal features (i.e. motion and dynamic 

events). Hence, the encoder in our model 

comprises three components: a 2D CNN for 

spatial feature extraction, a Video Swin 

Transformer for temporal feature extraction, and 

a neural feature fusion network to efficiently 

unify the extracted features.  

For the 2D CNN, the EffecientNet 

architecture is used, producing a feature vector 

for each processed frame. While the Video Swin 

Transformer produces a single feature vector for 

the entire sequence of video frames. To unify 

the extracted feature vectors, we construct a 

trainable neural network that consists of two 

fully connected networks with batch 

normalization, an activation function, and a 

dropout function in between. The main 

objective of this fusion network is to 

significantly reduce the computational time in 

addition to generating a more compact and 

informative video representation.  

 

Figure 3. Structure of the proposed video captioning 

model 

3.1.2 Caption decoder 

      The caption decoder comprises two main 

components: the decoder and the generator. The 

decoder, employing the Transformer decoder 

architecture, takes the video representation 

features and word embedding vectors as input, 

generating caption features. As in Transformer 

architectures, positional encoding is used to add 

position information to the embedding vectors. 

Meanwhile, the generator predicts the 

subsequent word in the caption by computing 

the probability of each word across the 

constructed vocabulary using softmax 

activation, based on the decoder output. The 

word with the highest probability is chosen as 

the predicted word. The caption decoder works 

progressively, starting with an initial token 

<SOS>. At each iteration, it takes in the video 

representation features (from the video encoder) 

and the partially completed caption that has 

already been predicted. It then predicts the next 
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word with the highest probability by passing 

through the decoder component and then 

through the generator component. This process 

continues until a distinctive token <EOS> (i.e. 

ending token) is encountered. 

3.2 Object detection module 

      For the object detection task in the proposed 

system, we employ the pre-trained YOLOv7 as 

the primary framework based on transfer 

learning. YOLOv7 is well-known for its 

efficiency and accuracy in real-time object 

detection tasks, making it well-suited for real-

time applications on embedded systems. This 

model identifies objects within the frame and 

categorizes them with labels such as "person," 

"car," "chair," etc. The text output of YOLO is 

modified by cleaning and removing 

punctuation, which ensures that the detected 

object names are formatted in a manner suitable 

for accurate and clear audio conversion. Finally, 

the processed labels are translated into audio 

descriptions using a text-to-speech conversion.  

4 Experimental analyses 

4.1 Video captioning 

In this subsection, we evaluate the 

performance of the video captioning module 

adopted in the proposed system using the 

Microsoft Research Video Description Corpus 

(MSVD) [39] dataset with the most frequently 

used metrics. Furthermore, we provide a 

comparative analysis between our proposed 

method and other existing video captioning 

approaches. 

4.1.1 Dataset and evaluation metrics 

     The MSVD dataset consists of a 1970 video 

clip with a duration mostly ranging from 10 to 

25 seconds with a single activity. Each video in 

MSVD is associated with about 40 captioning 

sentences that describe the salient objects, 

actions, and relations in the video. For 

benchmarking, the dataset is split into 1200 

videos for training, 100 videos for validation, 

and 670 videos for testing. For evaluating the 

model’s performance, we investigate the most 

commonly used assessment metrics in the video 

captioning approach which estimates the 

similarity between the predicted and the human-

annotated captions. These metrics are Bilingual 

Evaluation Understudy (BLUE) [43], Metric for 

Evaluation of Translation with Explicit 

Ordering (METEOR) [44], Recall Oriented-

Understudy for Gisting Evaluation (ROUGE) 

[45], and Consensus-based Image Description 

Evaluation (CIDEr) [46]. 

4.1.2 Implementation details 

      After performing hyperparameter 

optimization on the MSVD validation set, we 

adopted the following configuration. For 

keyframes extraction, we set 𝑁 = 8 keyframes 

extracted from each video in the dataset. For the 

video encoder, the pre-trained EfficientNet-B3 

is used as the 2D CNN, producing a feature 

vector with dimensions of 𝑁 × 1280. While, the 

pre-trained Swin-S (Swin-Small) model serves 

as the Video Swin Transformer, producing a 

feature vector with a dimension of 768 × 8 ×
7 × 7. These feature vectors are obtained by 

removing the final (i.e. classification) layer from 

both EfficientNet-B3 and Swin-S networks. 

Regarding the concatenation purposes, average 

pooling is applied to the feature vectors from 

EfficientNet-B3 across the 𝑁 frames. For the 

Video Swin model, 3D average pooling is 

applied across the last three dimensions, which 

represent the 3D-shifted window size. This 

process yields a single concatenated feature 

vector with a final dimension of 2048. This 

vector is then passed to the feature fusion 

network, which reduces it to a more compact 

vector with a dimension of 1024. The hidden 

dimension of the fusion network is set to 1024, 

with a dropout ratio of 0.2, and ReLU is used as 

the activation function. 

     On the caption decoder side, a trainable 

embedding layer with a dimension of 1024 is for 

word embedding. The Transformer decoder 

contains a single decoder layer with one 

attention head in the self-attention layer and one 

attention head in the multi-head attention layer. 

The feed-forward network comprises two fully 

connected layers with hidden dimensions of 

1024, where ReLU is applied after the first 

layer. For the generator, the hidden dimensions 

of the fully connected layers correspond to the 

size of the constructed vocabulary from the 
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MSVD dataset, which is 2,831. These fully 

connected layers are separated by a ReLU 

activation followed by a dropout with a 

probability of 0.2. The final output layer is a 

softmax, which translates the feature vector into 

a probability distribution across the vocabulary. 

To obtain the most likely words for the caption, 

a beam search algorithm with a beam size of 3 

is applied. 

     For sentence preprocessing, all punctuation 

marks are eliminated from each sentence in the 

MSVD captions. Subsequently, each sentence is 

segmented by blank spaces, and all words are 

converted to lowercase. All the sentences that 

exceed 15 words are truncated. Regarding 

training details, we used the Adam optimizer 

with a learning rate of 2e-5, a batch size of 64, 

and 50 training epochs. Figure 4 shows the 

training loss across training epochs for the video 

captioning model using the MSVD dataset. This 

model is trained on a single NVIDIA RTX 3060 

mobile GPU for later deployment on a Jetson 

Nano board. 

 

Figure 4. Evolution of training loss of video captioning model on the MSVD dataset 

4.1.3 Results and comparisons 

     To assess the effectiveness of our video 

captioning module, a detailed comparison is 

conducted with a set of existing videos 

captioning techniques, including RecNet [20], 

GRU-EVE [21], SibNet [22], and SAAT [23], 

GMNet [24], VADD [25], ADL [47], MM-AT 

[48], and the approach in [49], as presented in 

Table 1. 

     To identify the most effective architecture 

for our video captioning system, we conducted 

an extensive experiment evaluating various 

models, including Swin-T, Swin-S, 

MobileNetV2, VGG16, InceptionV3, 

ResNet50, and EffecientNetB3. This 

experiment considered both computational 

efficiency and accuracy in caption generation  as 

presented in Table 2. The inference speed in 

Table 2 involves the encoding-decoding process 

for 8 frames. This experiment provides a 

comprehensive analysis of the proposed method 

to select the best configurations that offer a 

balance between efficiency and accuracy. For 

qualitative evaluation, Figure 5 visualizes 

examples of descriptions generated by our 

model and other investigated video encoding 

models. This figure includes both accurate and 

imperfect predictions for the MSVD dataset. 
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Table 1: Comparative analysis of video captioning methods on MSVD dataset  

Methods Year Metrics 

  BLUE4 ROUGE-L METEOR CIDEr 
RecNet [20] 2018 52.3 69.8 34.1 80.3 

GRU-EVE [21] 2019 47.9 71.5 35.0 78.1 

SibNet (Conv+S) [22] 2020 54.2 71.7 34.8 88.2 

SAAT [23] 2020 46.5 69.4 33.5 81.0 

GMNet [24] 2021 52.1 70.7 33.5 83.1 

VADD [25] 2022 51.5 72.1 34.8 91.5 

ADL (Inception-V4) [47] 2022 54.1 70.4 35.7 81.6 

MM-AT (R+O+S) [48] 2023 53.6 73.5 35.0 87.4 

Research in [49] 2024 47.1 62.0 30.4 59.9 

Proposed  (EffecientNetB3 + 

Swin-S) 

2024 55.9 74.0 36.5 94.9 

 

Table 2: Efficiency comparison of various video encoder architectures in the proposed method 

Video Encoder 

 

Metrics 

Accuracy Inference Speed 

BLUE4 ROUGE_L METEOR CIDEr 
On RTX 3060 

GPU 
On Jetson 

Nano 
Only Swin-T 51.1 70.1 33.8 81.9 43 ms  0.91 s 

Only Swin-S 54.2 72.6 35.0 90.5 54 ms 1.37 s 

MobileNetV2 + Swin-T 51.7 71.4 34.2 82.8 52 ms 1.06 s 

MobileNetV2 + Swin-S 54.5 72.7 35.5 90.8 65 ms 1.52 s 

VGG16 + Swin-S 54.8 72.9 35.3 89.1 93 ms 2.80 s 

InceptionV3 + Swin-S 55.2 73.8 35.6 90.9 72 ms 1.83 s 

ResNet50 + Swin-S 53.8 73.1 35.2 91.4 82 ms 1.92 s 

EffecientNetB3 + Swin-T 54.4 72.3 35.1 88.0 63 ms 1.40 s 

EffecientNetB3 + Swin-S 55.9 74.0 36.5 94.9 78 ms 1.85 s 
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Figure 5. Qualitative comparison of the proposed video description on the MSVD benchmark across different model 
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Based on the results in Table 1, our 

approach demonstrates superior performance 

across all four metrics on the MSVD 

benchmark. Referring to Table 2, our analysis 

indicates that utilizing only the Swin-T model 

for video encoding yields the highest inference 

speed while maintaining acceptable accuracy 

compared to methods outlined in Table 1. 

Conversely, the EffecientNetB3-Swin-S 

backbone demonstrates superior performance 

across all four accuracy metrics while still 

achieving acceptable inference speed. Hence, 

we adopt the EffecientNetB3-Swin-S 

combination as our video encoder. Notably, the 

time calculated in Table 2 represents the time 

consumed for the encoding-decoding processes, 

excluding the preprocessing time. 

Figure 6 illustrates the performance of our 

captioning approach across 50 epochs on the 

testing set of the MSVD dataset. Referring to 

Figure 5, the proposed model utilizing the 

EfficientNetB3-Swin-S combination achieves 

the best performance in video description 

accuracy compared to other models. 

Nevertheless, Figure 5 also shows that the 

proposed model encounters limitations with 

some scenes. This can be attributed to the 

limited training data for such scenes within the 

MSVD benchmark. For instance, the model 

struggles with accurately describing cheetahs. 

Since the MSVD training set comprises only 

two videos featuring cheetahs, our model 

misclassifies them as dogs, which are frequently 

present in the dataset. This example highlights 

the importance of addressing data scarcity for 

specific scenarios when developing video 

description models. 
 

 
Figure 6. Model performance on MSVD testing set over training epochs 

According to Figure 6, our model reaches its 

peak performance at epoch 21 on average, 

particularly for the CIDEr metric. Notably, the 

CIDEr metric is specifically developed for 

evaluating image captioning tasks. Moreover, 

Figure 6 illustrates the fast convergence of the 

proposed method, requiring fewer training 

epochs compared to LSTM-based models. One 

of the key reasons for this behavior is the 

utilization of the Transformer architecture in the 

caption decoding part instead of the LSTM 

network, which typically requires longer 

training times to achieve similar performance.  

 

 

 

4.2 Object detection 

In this section, the performance of the object 

detection module in the proposed system is 

analyzed and evaluated. Our object detection 

module is mainly based on the pre-trained 

Yolov7 model, which is trained on the well-

known MS COCO dataset. To ensure efficiency, 

the system processes video frames at a rate of 

1fps and applies the YOLOv7 model for object 

detection on the sampled frames. YOLOv7 

offers different versions, ranging from the 

smallest YOLOv7-tiny to the largest YOLOv7-

E6E (see Table 3), with a trade-off between 

speed and accuracy [50]. Table 3 provides a 

comparison of these models across different 
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metrics, including computational efficiency on 

both the Jetson Nano device and a mobile 

NVIDIA RTX 3060 GPU, Average Precision 

(AP) test, model size, and total number of 

parameters. Furthermore, Figure 7 depicts the 

qualitative results from real-world scenarios 

using YOLOv7-tiny and YOLOv7-W6, which 

are specifically designed for edge GPUs. The 

figure demonstrates the capability of both 

models for real-time detection of multiple 

objects with high accuracy. However, as shown 

in Figure 7, YOLOv7-W6 offers superior 

accuracy compared to YOLOv7-tiny. For 

instance, the dining table is missing in the 

YOLOv7-tiny detection, and the bottle is 

misclassified as two separate objects (bottle and 

cup).  Therefore, we adopted YOLOv7-W6 in 

our system due to its favorable trade-off 

between speed and accuracy. 

Table 3: Comparative analysis of YOLOv7 versions in terms of accuracy, model size, and inference speed 

 

Model AP test (on 

MS COCO) 

Size Number of 

parameters 

Inference speed on 

RTX 3060 GPU 

Inference speed on 

Jetson Nano 

YOLO-tiny 38.7% 12.3 MB 6.2M 4 ms 250 fps 117 ms 8.19 fps 

YOLOv7 51.4% 73.8 MB 36.9M 12 ms 83 fps 547 ms 1.81 fps 

YOLO-X 53.1% 139.7 MB 71.3M 19 ms 52 fps 912 ms 1.08 fps 

YOLO-W6 54.9% 137.9 MB 70.4M 11 ms 90 fps 514 ms 1.93 fps 

YOLO-E6 56.0% 190.4 MB 97.2M 17 ms 58 fps 748 ms 1.32 fps 

YOLO-D6 56.6% 261.9 MB 133.7M 21 ms 47 fps 977 ms 1.01 fps 

YOLO-E6E 56.8% 297.2 MB 151.7M 27 ms 37 fps 1184 ms 0.84 fps 

 

 
Figure 7. Object detection comparison: (a) YOLOv7-tiny, (b) YOLOv7-W 

Table 4: Performance evaluation of YOLO-tiny and YOLO-W6 on objects in Figure 7. 

Detected object Accuracy using YOLO-

tiny 

Accuracy using 

YOLO-W6 

Improvement (W6-

tiny) 

Green apple 0.75 0.87 12% 

Orange 0.60 0.82 22% 

Banana 0.81 0.93 12% 

Yellow apple 0.57 0.88 31% 

Cell phone 0.72 0.92 20% 
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Mouse 0.93 0.95 2% 

Laptop 0.93 0.96 3% 

Cup 0.92 0.96 4% 

Dining table Missing 0.70 - 

Bottle 0.81(bottle) + 0.30 (cup) 0.94 13% 

Left chair 0.60 0.92 32% 

Right chair 0.74 0.84 10% 

 

5. Limitations 

      Even if our research offers a new direction 

for scene description specifically developed for 

aiding blind and visually impaired individuals, 

there are limitations to address. These 

shortcomings present valuable opportunities for 

further exploration in this field. The key 

shortcomings of our proposed solution are 

presented below: 

1- Applicability Scope: This approach is 

limited by the diversity of scenes found 

in the MSVD dataset and the recognized 

objects in the MS COCO dataset (i.e., 

only 80 objects). This narrows the range 

of scenes where users can receive 

assistance from this system. 

2- Limited Hardware Resources: The 

Jetson Nano used in this research has 

limited resources, such as relatively 

small memory shared between CPU and 

GPU in addition to fewer CUDA cores. 

This restricts the proposed video 

captioning method to using smaller or 

medium-sized models. Employing 

larger and more complex models, like 

Video Swin-B and EfficientNet-B7, 

would likely result in out-of-memory 

errors. 

6. Conclusion and future work 

This research introduces a hardware 

implementation system for visually impaired 

assistance, utilizing state-of-the-art deep 

learning techniques. We further analyze relevant 

studies from the literature, highlighting their 

limitations and paving the way for 

advancements in this field. Our approach is 

mainly based on video captioning and object 

detection to provide meaningful audio 

descriptions of the environment for enhancing 

the mobility and independence of users. By 

utilizing advanced architectures involving the 

Transformers network, EfficientNet, and 

YOLOv7, our system demonstrates a significant 

improvement in accuracy and efficiency. The 

combination of EfficientNetB3 with Swin-T and 

YOLOv7-W6 creates a favorable balance 

between computational time and accuracy. The 

implementation on a Jetson Nano board proves 

the feasibility of deploying a powerful deep 

learning-based system on resource-constrained 

hardware. Moreover, the proposed system is 

cost-effective and easy to set up in addition to 

requiring no special skills to operate. Our 

extensive experiments demonstrate the 

adaptability and effectiveness of the proposed 

system across various scenarios. 

For future work, we plan to explore the use 

of the TensorRT engine to accelerate system 

performance. Additionally, employing more 

robust hardware like the Jetson Xavier NX 8GB 

(with 384 CUDA cores) would facilitate the use 

of larger deep models to improve accuracy and 

response times. Furthermore, adding other 

assistive technologies to the system, such as text 

recognition and facial recognition, could 

enhance its utility for visually impaired 

individuals.  

Ethical considerations will be an integral 

part of these future developments. We aim to 

address privacy concerns by ensuring that all 

data processing occurs locally, thereby 

protecting user data. To reduce bias, we will 

incorporate more diverse datasets during model 

training, ensuring equitable performance across 

different user demographics. Increasing user 

trust in the system's accuracy will be a priority, 

achieved through extensive testing and 

incorporating user feedback to refine and 

improve the models continuously. Continued 
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research in this area could lead to more 

comprehensive solutions for providing greater 

accessibility and independence.  
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