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Motor imagery (MI) electroencephalographic (EEG) signals have many real-world 

applications such as controlling a wheelchair through thought, body motor 

rehabilitation, person identification, and more. However, MI signals are quite complex 

due to their non-stationary nature and high dimensionality, meaning there is no specific 

rhythm from the many sources of signals. The deep convolutional neural network 

(CNN) overcomes these challenges by automatic feature extraction and selection. 

However, CNN architecture comprises many parameters (weights of network 

connections) and hyperparameters (related to network architecture) requiring 

optimization. The backpropagation algorithm optimizes the parameters, while the 

hyperparameters are adjusted manually through a lengthy trial-and-error process. This 

paper proposes a GACNN model to optimize those hyperparameters. The proposed 

model employs the genetic algorithm (GA) to optimize the number of convolution filters 

at each CNN layer, the size of filters, and the dropout probability. Additionally, the GA 

optimizes the cropping augmentation (used to boost the EEG training samples) 

parameters, namely window size and step size. The GACNN achieved promising results 

in MI EEG analysis compared to state-of-the-art studies. Experimental results showed a 

17% increase in Cohen’s kappa coefficient, indicating the model’s classification 

accuracy. A decrease of about 25% in standard deviation (SD) is recorded, indicating 

that the GACNN showed no bias among the subjects who participated in the experiment. 
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1. Introduction  

Electroencephalography (EEG) has 

generated significant attention in recent decades 

employing it for a myriad of real-world 

applications, including body motor 

rehabilitation, neuro-marketing, disease 

detection, person identification, neuro-

entertainment, and many others. These 

applications predominantly rely on the 

interaction between humans and computer 

devices. Motor Imagery (MI) is a notable 

paradigm for recording EEG signals [1]. 

‘Motor’ refers to any joint in the human body, 
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while ‘imagery’ implies that a person only 

thinks (intends) to move a specific joint without 

physically doing so. Various tasks (joint 

movements) have been extensively 

experimented with and utilized in real-world 

applications including right-hand, left-hand, 

tongue, and feet [2-3]; in addition to other fine-

body parts such as diametric grasp, lateral grasp, 

wrist deviation, wrist flexion, wrist extension, 

and finger-related tasks [4], other tasks may also 

exist. 

EEG signals are acquired via several 

channels (electrodes) ranging from three to 
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more than one hundred channels. This multitude 

of channels produces massive features, each 

with various frequency components. 

Furthermore, EEG signals exhibit non-

stationary behavior; i.e., the signals do not show 

a repetitive specific rhythm along with noise and 

artifacts stemming from the recording devices 

and unrelated body movements, such as the eye 

blink [5]. Therefore, the curse of dimensionality 

problem appears, making building a robust 

identification model challenging. 

Various conventional machine learning 

algorithms have been developed for EEG 

analysis. The Common Spatial Pattern (CSP) 

has been widely used to discover several spatial 

filters to maximize the distance between each 

pair of available classes, such as feet and tongue 

[6]. A variation of CSP that addresses the loss of 

temporal information is the Filter-Bank 

Common Spatial Pattern (FBCSP), in which the 

number of filter banks is first determined, and 

then the CSP energy is estimated for each 

temporally filtered signal [7]. However, such 

conventional feature extraction methods involve 

human intervention to design features, which 

can be challenging in the case of EEG signals 

due to the curse of dimensionality. 

Deep Learning (DL) algorithms have 

recently gained high attention and have been 

adopted in diverse research fields, including 

time-series signal processing, image processing 

[8-10], and video processing [11]. This high 

attention is due to the capability of DL for 

automatic feature extraction and selection [12] 

that reduces the burden on the designer and 

ensures the analysis of each latent feature type. 

This is extremely beneficial, especially for EEG 

signals due to their high-dimensional features.  

The DL-MI EEG classification framework 

depends on the Event-Related 

Synchronization/Desynchronization 

(ERS/ERD) phenomena that occur during the 

performance of MI tasks [1]. The two cerebral 

phenomena are characterized by increments and 

decrements in signal voltage, resulting from 

synchronizing and desynchronizing various 

cerebral signals within specific frequency 

bands. DL detects and extracts these changes as 

distinct features of an MI class. 

Various types of EEG recordings have been 

recently analyzed using DL algorithms. In [13], 

the authors developed a fused DL model 

consisting of a Convolutional Neural Network 

(CNN) and Long Short-Term Memory (LSTM) 

to differentiate high/low arousal and high/low 

valence emotions. In [14], the authors developed 

a real-time stroke identification system using 

DL and a metaheuristic optimizer. EEG 

recordings were analyzed using a hybrid 

classifier consisting of a CNN and a 

Bidirectional Gated Recurrent Unit (BiGRU), 

while harmony search was the optimization 

algorithm. Many other uses of DL in analyzing 

EEG signals exist [15-17]. 

Despite the remarkable advantages of the 

DL approach, it has several disadvantages. DL 

deals with large-scale neural networks which 

require a considerable amount of memory 

during identification to hold a large number of 

learnable parameters [18]. A substantial amount 

of training samples is required to tune the 

learnable parameters; otherwise, the 

underfitting problem may occur [19]. This can 

result in a trivial and non-generalizable model 

unable to capture adequate latent information 

for future predictions.  

Researchers have suggested several 

methods to deal with large-scale deep networks. 

Dropout is a commonly used technique during 

the CNN construction, which randomly ignores 

several learnable parameters. This reduces the 

network size by a factor related to the dropout 

probability and helps prevent the overfitting 

problem. However, the dropout probability is 

often set arbitrarily without optimization 

leading to possible over- or under-estimation of 

the task. 

On the other hand, the lack of data can be 

tackled using augmentation methods. Various 

methods exist for images and time-series 

signals. The augmentation process relies on 

geometric variation, noise addition, and 

cropping [20]. The augmentation process 

generates new samples from the available ones, 

thereby increasing the dataset size. Specifically, 

several augmentation methods exist for EEG 

analysis, such as cropping, CutCat, and 

Gaussian noise [1], [21]. Augmentation 

methods are applied randomly; for example, the 
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window and step size of the cropped part are 

arbitrarily set leading to possible loss of latent 

features. 

Accordingly, it is important to design a 

CNN tailored to the task and generate new 

feasible training samples. The known 

Backpropagation algorithm (BP) optimizes the 

network’s learnable parameters (weights) 

without considering the network’s 

hyperparameters, such as the number of 

convolution filters (kernels), size of filters, and 

dropout probability. These network’s 

hyperparameters affect the resulting network 

size and thus its architecture complexity. 

Therefore, it is advantageous to jointly optimize 

the learnable parameters and hyperparameters, 

eliminating the burden on the designer and 

achieving a tailored CNN.  

The Genetic Algorithm (GA) is a powerful 

heuristic optimization algorithm used to search 

for optimal solutions within a complex error 

surface and a large parameter space [22], [23]. 

GA starts with an initial set of solutions, 

quantifies these possible solutions, produces a 

new generation of solutions, and repeats this 

process until reaching the optimized set of 

solutions. 

In this paper, the GACNN model is 

proposed. The model employs a deep CNN 

composed of four convolution layers for MI 

EEG-related feature extraction and selection. 

While BP tunes the network’s parameters, 

GACNN leverages GA to tune the network’s 

hyperparameters and cropping parameters. 

GACNN aims to produce a tailored CNN for a 

specific task. 

The problem statement of the paper can be 

stated in the following two main points: 

• The backpropagation optimization 

algorithm does not optimize CNN’s 

hyperparameters, such as the number of 

convolution filters (kernels), size of filters, 

and dropout probability.  

• Previous studies have set cropping 

augmentation parameters arbitrarily, which 

impacts the information contained in the 

generated trials. 

Consequently, the primary contributions 

achieved in this paper are: 

• Hyperparameter optimization: GACNN 

uses GA to optimize the core CNN’s 

hyperparameters, namely the number of 

convolution filters (kernels), size of 

convolution filters (i.e., width and height), 

and dropout probability. 

• Augmentation optimization: GACNN 

uses GA to optimize the cropping 

augmentation’s parameters, namely 

window size and step size. 

The rest of the paper is organized as 

follows: Section 2 discusses several previous 

works related to the paper's subjects. Section 3 

provides a theoretical background of the main 

techniques and presents the proposed GACNN 

model. The experimental settings are discussed 

in Section 4. Section 5 presents the experimental 

results with a discussion, and Section 6 

concludes the paper. 

2. Literature review 

Many studies have explored two method 

categories to analyze and decode EEG signals. 

The first category includes traditional signal 

processing techniques that depend on manual 

feature design, which can be time-consuming 

and error-prone. The second category is the DL 

techniques that alleviate the burden on the 

designer through automatic feature extraction 

and selection. 

Authors of [24] adopted a deep CNN for 

person identification using EEG recordings. The 

CNN extracted the dominant spatial features 

from the signals, while Recurrent Neural 

Networks (RNNs) were used to extract the 

temporal features. Two models were examined: 

the CNN-GRU, which uses a CNN with a Gated 

Recurrent Unit (GRU) as the RNN, and the 

CNN-LSTM, which uses a CNN with an LSTM 

as the RNN. The authors achieved a high 

identification accuracy in practical applications. 

Transfer learning was used in [25] to train two 

deep CNN networks to classify MI EEG signals. 

Transfer learning involves training a pre-trained 

network by tuning only the parameters of the 

last layers; it is useful when there are not enough 

training samples, especially with large-scale 

networks. The authors used two established 

CNN architectures ResNet-50 and Inception-v3, 
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in conjunction with an LSTM network. 

Originally, these CNN architectures were 

trained on natural images, therefore, the authors 

generated spectral images using continuous 

wavelet transform to train the networks on the 

EEG data.  

In [6], the goal was to detect covariance shifts 

in EEG distributions. Feature extraction was 

achieved by detecting variations in principal 

component analysis, after which a k-nearest 

neighbor classifier was trained. The authors of 

[26] used multivariate intrinsic mode functions 

to extract cross-channel information from EEG 

signals. A class-related covariance matrix was 

then constructed and the Riemannian geometry 

algorithm was utilized to measure the distance 

between the known covariance matrix and an 

unknown test trial. An 8-bit numerical 

quantization was applied in [27] to the weights 

and activations of EEGNet (a well-known 

benchmark deep CNN in EEG analysis), the 

new version of the network is called Q-EEGNet. 

An augmentation method called Cut-

Concatenation (CutCat) is proposed in [1] to 

handle the non-stationary nature of EEG signals. 

In CutCat, a new trial is formed by 

concatenating short crops from several trials of 

MI EEG tasks belonging to different subjects. 

The generated trials were used to train a deep 

CNN composed of four convolutional layers. 

Researchers adopted GA for various issues 

related to EEG signals. GA was applied in [28] 

to select relevant features for classifying left-

hand and right-hand MI tasks. A feature vector 

was constructed using autoregressive 

parameters and discrete wavelet transform, then 

the GA was employed to identify the features 

that contributed to the highest classification 

accuracy while discarding less informative ones. 

GA was adopted in [22] to determine the 

optimal set of EEG channels for MI task 

classification. This process involved using CSP 

for feature extraction and the Support Vector 

Machine (SVM) for classification. In [23], GA 

was employed to reduce noise in EEG signals 

retrieving the optimal parameters for wavelet 

transform. Additionally, many studies have 

utilized DL in the analysis of other medical 

signals [29-31]. 

 

3. Materials and methods 

This section provides a theoretical 

background on CNNs, cropping augmentation, 

and GA. Then, it presents the proposed GACNN 

model. 

3.1 Convolutional neural network (CNN) 

The general CNN architecture is primarily 

composed of feature extractors and a classifier 

[1]. The feature extractors are layers of 

convolution filters with activation functions, 

along with other regularization layers and 

operations such as pooling, batch normalization, 

and dropout. The first network’s layer receives 

the training data as input, and the layer’s output 

passes to the subsequent layers. During the 

training, convolution layers automatically 

extract latent features from the training data. 

While the initial layers extract basic features, 

more complex features are gradually captured in 

the subsequent layers. The extraction process is 

primarily accomplished by the convolution 

filters, being considered the core components of 

CNNs.  

The filters themselves are essentially 

matrices of values with specific widths and 

heights. The convolution operation that occurs 

between the input layer (or a feature map 

matrix) and a filter can be mathematically 

represented as follows: 

 

𝑐𝑖𝑗
𝑦

= ∑ ∑ 𝑓𝑙𝑚
𝑦𝑘

𝑙 × 𝑥(𝑖+𝑙−1)(𝑗+𝑚−1)
𝑘
𝑚                 (1) 

 

where 𝑐𝑖𝑗
𝑦

 is an entry in the feature map matrix 

generated from the 𝑦-th filter (𝑦 = 1,2, … , 𝑑) 

where 𝑑 is the number of the applied filters of 

size 𝑘 × 𝑘, 𝑖 and 𝑗 are the row and column 

indices in the feature map matrix, 𝑓𝑙𝑚
𝑦

 is an entry 

in the filter matrix, 𝑙 and 𝑚 are the row and 

column indices in the filter matrix,  and 𝑥 is an 

entry in the input sample signal.  

Given the number of input feature maps 

(𝐹𝑀𝐿−1) and the number of output feature maps 

(𝐹𝑀𝐿) at a specific convolution layer, then the 

number of learnable parameters at that layer can 

be calculated as follows [32]: 

 

𝑁𝑢. 𝑝𝑎𝑟𝑚 = 𝑘 × 𝑘 × 𝐹𝑀𝐿−1 × 𝐹𝑀𝐿             (2) 
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The number and size of employed filters 

significantly affect the feature extraction 

process. A larger number of filters is expected 

to extract a greater variety and quantity of 

features. However, this comes at the cost of 

increased memory requirements, longer training 

times, and higher demands on computational 

resources, even on edge devices during the 

inference process. 

Dropout is a regularization technique used 

to mitigate the overfitting problem occurring in 

CNNs. Overfitting happens when a model 

performs well on the training data but fails to 

generalize to the test data. This issue may arise 

from the small number of training samples 

relative to the network size, excessive training 

epochs, or too many convolutional filters [33]. 

The dropout layer works by randomly 

deactivating a certain percentage of parameters 

based on a predefined probability.  

3.2 Cropping augmentation  

The massive number of deep learning 

learnable parameters requires extensive training 

samples to avoid the overfitting problem. 

However, obtaining large EEG datasets is 

challenging, especially in situations involving 

sensitive personal information such as certain 

diseases or experimental settings with subjects 

that induce fatigue. Augmentation methods 

permit the use of limited datasets to train large-

scale CNNs. Creating variability is another goal 

of augmentation methods, which can lead to 

more reliable models.  

Cropping is a vital augmentation method 

that was first suggested for 2D images and later 

adopted for EEG signals. This method has 

achieved better results compared to other 

methods for EEG analysis [21]. Cropping a 

time-series signal involves generating many 

short slices from the original signal by sliding a 

window over its samples. The method depends 

on the window size and step size; the smaller the 

values of those two variables, the larger the 

number of slices acquired (i.e. more training 

samples); and vice versa. However, as the slices 

become smaller, latent information may be lost. 

Therefore, one should consider the trade-off 

between the number of generated training 

samples and the information retained within 

each trial.  

As EEG signals are highly variable, 

selecting the window and step sizes can be 

challenging when using the trial-and-error 

method. An optimization algorithm can be 

employed for this task. 

3.3 Genetic algorithm (GA) 

The GA is an optimization technique 

belonging to the family of evolutionary 

computation algorithms and has many potential 

applications [14], [23]. The GA procedure 

begins by initializing several encoded possible 

solutions called a population of individuals 

(chromosomes). These individuals compete 

based on a predefined fitness function tailored 

to a specific task, driving the survival of the 

fittest. Throughout the GA procedure, 

individuals evolve over multiple generations by 

creating new offspring similar to their parents 

representing new possible solutions. This 

development is achieved through three main 

operations: selection, crossover, and mutation. 

Before these main operations, the 

information of a possible solution must be 

encoded into an individual (chromosome) as a 

string of values (genes). Several encoding 

methods exist, such as binary, integer, and real; 

the choice depends on the task and the types of 

used crossover and mutation. The selection 

operation uses the fitness function to rank the 

individuals based on their quality, meaning 

high-quality solutions have a greater chance of 

being selected and reproducing offspring. The 

selection operation gradually updates the 

possible solutions, preventing the GA from 

being trapped in a local optimum. Crossover 

produces new and diverse solutions by 

determining how two parents pass their encoded 

information (the genes) to the new offspring. 

Mutation produces innovative solutions to help 

escape local optima by changing the values of 

genes rarely and randomly. The replacement 

operation occurs after completing the three main 

operations. Replacement merges individuals of 

the current population with the newly produced 

ones. Afterward, the best individuals are 

retained to form the new generation. This 

procedure iterates until convergence is 
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achieved; either by reaching the desired fitness 

level or hitting the maximum number of 

generations. 

3.4 The proposed GACNN model 

A schematic block diagram of the proposed 

GACNN model is shown in Figure 1. The 

GACNN process begins by acquiring EEG 

signals and generating training samples using 

cropping with initial window size and step size. 

A four-layer deep CNN is constructed with 

initial values for the number of filers at each 

layer, size of filters, and dropout rate. The GA 

generates these hyperparameter values as the 

initial population of solutions (individuals). The 

CNN is trained using BP and all the generated 

trials. Training continues until the desired 

classification accuracy is achieved or the 

maximum number of training epochs is reached. 

The GA undergoes fitness evaluation, selection, 

crossover, mutation, and replacement to 

produce a new generation of possible solutions. 

Based on the evaluated classification error and 

network complexity represented by the number 

and size of filters, the GA continues producing 

new generations until the desired fitness level is 

achieved or the maximum number of 

generations is attained. 

The structured GACNN algorithm for 

optimizing the hyperparameters can be 

described as follows: 

Algorithm: CNN optimization using BP and 

GA 

Input: 

• EEG training data: 𝑋train 

• Hyperparameters to optimize: Number of 

convolution filters per layer, size of filters, 

dropout probability, window size, step 

size. 

• Maximum number of generations: 𝐺𝑚𝑎𝑥 

• Population size: 𝑃𝑠𝑖𝑧𝑒 

• Mutation rate: 𝑚 

• Crossover rate: 𝑐 

Output:  

Optimized hyperparameters: 𝜃∗ 

Initialization 

1. Randomly initialize a population 𝑃 of 

size 𝑃𝑠𝑖𝑧𝑒. 

• Each individual 𝐼 ∈ 𝑃 represents a set of 

hyperparameters: 

𝐼
= {𝑛𝑢𝑚_𝑓𝑖𝑙𝑡𝑒𝑟𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟_𝑠𝑖𝑧𝑒, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑝𝑟𝑜𝑏, 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒, 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒} 

2. For each individual 𝐼 randomly assign 

values for the hyperparameters. 

Training and Evaluation 

3. For each generation 𝑔 = 1,2,3, … , 𝐺𝑚𝑎𝑥: 

• For each individual 𝐼: 

o Apply copping based on 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 

and 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 from 𝐼 to generate more 

training samples 𝑋𝑐𝑟𝑜𝑝
𝑡𝑟𝑎𝑖𝑛. 

o Build and train a CNN model ℳ𝜃 based 

on 𝑛𝑢𝑚_𝑓𝑖𝑙𝑡𝑒𝑟𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟_𝑠𝑖𝑧𝑒, and 

𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑝𝑟𝑜𝑏 from 𝐼 using 𝑋𝑐𝑟𝑜𝑝
𝑡𝑟𝑎𝑖𝑛. 

o Evaluate the trained model on validation 

data and calculate the classification 

error: 𝔼
𝑥

[ℒ (𝑥, ℳ𝜃(𝑋train))]. 

Fitness Calculation  

4. Calculate the fitness of each individual 

𝐼: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐼) =
1

𝔼
𝑥

[ℒ(𝑥,ℳ𝜃(𝑋train))]
. 

GA Operations 

5. Encoding: encode each individual 𝐼 

using the integer representation. 

6. Selection: select parent individuals 

based on their fitness values using the 

elitism strategy. 

7. Crossover: with probability 𝑐 perform 

crossover between selected parents to 

generate offspring. 

8. Mutation: with probability 𝑚 mutate the 

offspring by randomly changing one or 

more values in the offspring. 

9. Replacement: replace the current 

population with the offspring, 

maintaining the best individuals. 

Convergence Check 

10. If the population has converged or the 

maximum number of generations 𝐺𝑚𝑎𝑥 

is reached, stop the process. 

Return the Optimal Model 

11. The individual 𝐼∗ with the highest fitness 

is considered the optimal solution 

• Return the optimized values of 𝐼 based on: 

𝜃∗ = argmin
𝜃

𝔼
𝑥

[ℒ (𝑥, ℳ𝜃(𝑋train))].    

The designed CNN includes four convolution 

layers, and the GA optimizes the relevant 

hyperparameters for each layer in addition to the 

cropping parameters. Figure 2 illustrates the 

gene variables of a GA’s individual. 
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Figure 1. A schematic block diagram of the proposed GACNN model. The BP and cropped trials are used to train a deep CNN. The 

GA optimizes the number of convolution filters, the size of filters, and dropout probability, in addition to the cropping’s window size 

and step size. 

 

Figure 2. The gene variables of a GA’s individual
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4. Experimental setup 

This section presents the MI EEG dataset 

and the evaluation metrics for quantifying the 

experiments. It then provides the details of 

experimental settings related to the training 

process and the GA.  

 

4.1 Dataset 

The well-known Brain-Computer Interface 

(BCI) Competition IV 2a (BCIC IV 2a) dataset 

[34] is analyzed in the experiments. The dataset 

comprises recordings from nine subjects, each 

has performed two separate sessions on two 

different days. The signals are captured using 22 

electrodes (channels) placed on the scalp 

according to the 10-20 international system. 

Each recorded session consists of 288 trials 

evenly distributed among four MI tasks: right-

hand, left-hand, feet, and tongue, i.e., 72 trials 

for each task. The trial timing scheme, 

illustrated in Figure 3, begins with a fixation 

sign displayed on a screen, followed by a cue 

indicating one of the tasks for the subject to 

perform. Afterward, a short break is provided 

before the next cue is displayed. The signals are 

sampled at a rate of 250 Hz. The dataset is freely 

available and can be downloaded from the link: 

https://www.bbci.de/competition/iv/. 

 

 
Figure 3. The timing scheme of an MI EEG trial

4.2 Training settings 

The experiments are conducted on nine 

computers to parallelize computations. Each 

computer is equipped with an AMD EPYC 7282 

16-core CPU, 64 GB of RAM, and the Nvidia 

RTX 4090 GPU. The parallelization approach 

involves processing the data for each subject on 

a separate computer. The nine computers are 

accessed via the online platform vast.ai. This 

parallelization has accelerated the training 

process as GA requires multiple passes through 

the training data to achieve the optimized 

parameters. 

The model’s code is written in Python 

utilizing the following programming 

environment and machine learning libraries: 

TensorFlow, Keras, NumPy, scikit-learn, SciPy, 

Seaborn, and Matplotlib. 

The available training data is split into 70% 

of each MI label for training and 30% for 

testing. The early stopping mechanism is 

implemented with 40 epochs of waiting for a 

better model than the current one, with a 

maximum of 500 epochs of training in case no 

more improvement occurs. This technique helps 

in preserving the best-trained model quickly 

while preventing overfitting. The learning rate 

starts with 0.001 and adapts based on the 

evaluated error. The activation function is the 

exponential linear unit (ELU). The batch size is 

set to 100, i.e., the number of trials at each 

training iteration is 100. 

4.3 Genetic algorithm settings 

Each GA operation can be applied using 

various algorithms. Integer encoding is used to 

represent the gene values of individuals because 

all hyperparameters have integer values. The 

number of individuals (population size) is 30. 

The selection operation is applied utilizing the 

elitism algorithm. The single point crossover is 

applied and the uniform type is used for the 

mutation operation. These GA settings were 

chosen after several experimental trials.  

The ranges of values for the number of 

filters and filter sizes are not determined for the 

GA, while the dropout range is 0%-100%, and 

the range of both window size and step size is 0-

1000. 

https://www.bbci.de/competition/iv/
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4.4 Evaluation metrics 

This paper deals with a classification task 

with predefined classes: right-hand, left-hand, 

feet, and tongue. Therefore, the classification 

accuracy metric (𝐴𝑐𝑐) is suitable for quantifying 

the proposed model. It can be calculated as 

follows: 

 

𝐴𝑐𝑐(%) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%                 (3) 

 

where 𝑇𝑃 is the true positive rate, 𝑇𝑁 is the true 

negative rate, 𝐹𝑃 is the false positive rate, and 

𝐹𝑁 is the false negative rate.  

Other classification metrics are also 

evaluated to provide deeper insight into the 

performance of the proposed system. The 

metrics include precision, sensitivity, 

specificity, and F1-score. Their formulas are 

given as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                        (4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                     (5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                     (6) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
                            (7) 

 

Cohen’s kappa value (κ) measures the 

consistency of agreement between two raters. it 

is more robust than classification accuracy as it 

rejects the impact of true classification 

occurring by chance. The κ value [35] can be 

calculated as follows: 

 

kappa (κ) =
𝐴𝑐𝑐−𝐸𝐴

1−𝐸𝐴
                                       (8) 

 

where 𝐸𝐴 = 1 𝑛⁄  is the expected accuracy, and 

𝑛 is the number of classes, for instance 𝐸𝐴 is 

equal to 0.25 in a 4-class problem. The value of 

κ ranges from 0 indicating incorrect 

classifications to 1 indicating correct 

classification. 

The Standard Deviation (SD) is calculated 

to compare the performance of the proposed 

model with other previous works. SD indicates 

the spread of data points about their mean value 

[36]. A lower SD value means that the data 

points are close to each other, and in a 

classification problem, it indicates fair handling 

of the different sources of observations. For 

𝑥𝑖(𝑖 = 1, … , 𝑁) data points, SD is calculated as 

follows: 

 

𝑆𝐷 = √
1

𝑁
∑ (𝑥𝑖 − �̅�)2𝑁

𝑖=1                                 (9) 

 

where 𝑥𝑖 is one of the 𝑁 values, and �̅� is the 

average of those 𝑁 values. 

The Confusion Matrix (CM) is also provided 

to present detailed results for each subject, based 

on the classification of the four MI tasks. 

 

5. Results and discussion 

This section discusses the achieved 

experimental results presenting the performance 

of GACNN, comparing it to several state-of-the-

art studies, and highlighting the best-retrieved 

values of the optimized hyperparameters. 

 

5.1 Performance of GACNN  

The experimental results of the proposed 

GACNN model for classifying the 4-class MI 

EEG tasks are presented in 
Table 1: Comparison of GACNN results with 

previous studies on the BCIC IV 2a dataset 

. This table includes results from previous 

studies for comparison purposes. The selected 

studies use the same analyzed dataset (BCIC IV 

2a) for a fair comparison. Two of the papers ([6] 

and [26]) utilize conventional classification 

models, while the other two ([27] and [1]) use 

DL models.  

The table presents the classification results 

in terms of accuracy and kappa. Almost all 

models exhibit poor performance for subjects 2, 

5, and 6 compared to the results of other subjects 

(the worst three results for each model are 

highlighted in yellow), confirming that 

GACNN’s results are consistent with those of 

previous studies. However, GACNN achieved 

the best outcomes for these three subjects, it 

outperformed the other models by attaining the 

highest average classification accuracy. The 

higher kappa value achieved by GACNN 

indicates better consistency in classification 
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results as it accounts for the effect of true 

classifications occurring by chance. 

 

Table 1: Comparison of GACNN results with previous studies on the BCIC IV 2a dataset 

Subject 

[6] 

CSD 

[26] 

SS-MEMDBF 

[27] 

EEGNet 

[27] 

Q-EEGNet 

[1] 

CutCat 

GACNN 

Acc (%) 𝛋 
Acc 

(%) 
𝛋 

Acc 

(%) 
𝛋 

Acc 

(%) 
𝛋 

Acc 

(%) 
𝛋 Acc (%) 𝛋 

1 90.28 0.870 91.49 0.887 81.10 0.748 81.00 0.747 82.64 0.769 84.00 0.787 

2 58.33 0.444 60.56 0.474 52.20 0.363 53.10 0.375 60.76 0.477 63.10 0.508 

3 97.22 0.963 94.16 0.922 91.30 0.884 91.20 0.883 94.79 0.931 92.70 0.903 

4 67.36 0.565 76.72 0.690 59.10 0.455 58.10 0.441 81.25 0.750 77.40 0.699 

5 59.03 0.454 58.52 0.447 68.60 0.581 68.40 0.579 47.22 0.296 72.40 0.632 

6 65.97 0.546 68.52 0.580 52.00 0.360 50.10 0.335 67.36 0.565 69.00 0.587 

7 70.83 0.611 78.57 0.714 76.80 0.691 75.20 0.669 89.58 0.861 94.20 0.923 

8 90.97 0.880 97.01 0.960 80.00 0.733 81.20 0.749 80.56 0.741 86.90 0.825 

9 90.28 0.870 93.85 0.918 79.30 0.724 79.70 0.729 78.13 0.708 84.40 0.792 

Average 76.70 0.689 79.93 0.732 71.16 0.615 70.89 0.612 75.81 0.677 80.46 0.739 

Additionally, GACNN outperformed the 

results of the study that first used cropping 

augmentation [21]. GACNN achieved increases 

in classification accuracy of 12% and 10% 

compared to the deep and shallow networks 

proposed in the study, respectively. The detailed 

results for different subjects were not provided 

in that paper; therefore, they are not listed in 
Table 1: Comparison of GACNN results with 

previous studies on the BCIC IV 2a dataset 

. 

The SD results for both accuracy and kappa 

are presented in 

. GACNN achieved the lowest SD value, 

indicating fair data analysis concerning the 

different subjects. In other words, GACNN 

exhibits the least bias among the four MI classes 

related to subjects.  

Figure 4 summarizes GACNN’s 

achievements compared to results of the other 

studies based on the increments and decrements 

in accuracy, kappa, and SD. GACNN 

outperformed all methods in the studies across 

all metrics, achieving higher accuracy, higher 

kappa, lower SD for accuracy, and lower SD for 

kappa. 

 

Table 2: The achieved SD for accuracy and kappa 

Models SD for Acc SD for 𝛋 

CSD [6] 15.33 0.204 

SS-MEMDBF [26] 14.99 0.2 

EEGNet [27] 13.96 0.186 

Q-EEGNet [27] 14.3 0.191 

CutCat [1] 14.87 0.198 

GACNN 10.7 0.143 
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Figure 4. Summary of improvements. Compared to other studies, GACNN demonstrates higher classification accuracy 

(Acc), higher kappa (𝜅), and lower standard deviation (SD) for both accuracy and kappa

Further analysis of the achieved 

performance is provided in 
Table 3: Overall evaluation metrics achieved by 

GACNN for each MI class 

. The table presents results related to 

precision, sensitivity, specificity, and F1-score, 

for each MI class. These results demonstrate the 

satisfactory performance of GACNN, indicating 

no bias toward any specific MI class.

Table 3: Overall evaluation metrics achieved by GACNN for each MI class 

Evaluation metric Left Hand Right Hand Feet Tongue 

Precision 0.80 0.79 0.84 0.82 

Sensitivity 0.84 0.79 0.80 0.82 

Specificity 0.93 0.92 0.95 0.94 

F1-score 0.82 0.79 0.82 0.82 

 

5.2 Sensitivity of GACNN 

The confusion matrix (CM) provides a 

deeper understanding of the experimental 

results by presenting the classification accuracy 

for each MI task and subject. Error! Reference s

ource not found. displays a CM for each 

subject. The diagonal cells show the percentage 

of correctly classified test trials, while the off-

diagonal cells provide the percentage of 

incorrectly classified trials. Each row of the CM 

represents the actual or ground truth labels, 

while each column represents the predicted 

labels. 

Results presented in many papers such as 

[1], [37-39] demonstrate variable sensitivity 

across the different classes of the BCIC IV 2a 

dataset. Specifically, the classification accuracy 

for right-hand and left-hand tasks tends to be 

higher compared to feet and tongue tasks. In 

contrast, the GACNN results indicate nearly 

equal accuracy across different subjects and MI 

classes. This highlights the fair sensitivity of the 

proposed model in handling these diverse 

classes. Error! Reference source not found. d

epicts the average CM for the nine subjects. 
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Figure 5. Subjects’ confusion matrices (CMs). A CM shows the accuracy of correct classifications in the diagonal cells 

for each task and incorrect classifications in the off-diagonal cells 

 
Figure 6. Averaged CM for the nine subjects. GACNN demonstrates fair sensitivity across the four MI tasks

5.3 Optimization results 

The GA is employed to optimize the CNN 

architecture including the number of 

convolution filters, size of filters, and dropout 

probability. Table 4 outlines the values obtained 

for these three hyperparameters in each CNN 

layer.  

Given that EEG signals exhibit subject-

specific features [26], [40], it is essential to 

optimize the network architecture for each 

subject. Subject-specific models are applicable 

in various domains such as stroke therapy, 
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wheelchair control, and sleep disorder 

treatment. 

Moreover, as previously mentioned, GA 

searched for suitable settings for cropping 

augmentation. Figure 6 illustrates the model 

performance regarding fitness versus the 

cropping window size and step size. The range 

of collected crops starts from the beginning of 

the MI trial (second 2) and ends 0.5 seconds 

after the end of the MI trial (second 6.5). The 

retrieved values are a window size of 1000 and 

a step size of 5. These values ensure proper 

capturing of latent features and generate more 

training trials. Logically, a shorter crop contains 

less information, while a longer crop provides a 

feasible amount of information. This indicates 

that ERS and ERD features persist for about four 

seconds after completing the MI task.Error! R

eference source not found. illustrates the 

convergence of the optimization process 

achieved by the GA. The process required 113 

generations to reach maximum fitness, i.e., the 

best hyperparameters.  

It is worth mentioning that the complexity 

of GACNN’s algorithm, arising from the 

repeated training process at each generation 

impacts only the training stage. This complexity 

does not affect the resulting model as the 

training occurs only once; thereafter, the 

resulting CNN model can be employed in real 

devices. 

 GACNN demonstrated superior 

performance compared to previous studies, 

achieving a 17% increase in kappa and a 25% 

decrease in SD relative to the Q-EEGNet model, 

a well-known benchmark model in EEG 

analysis. This confirms that the automatic 

selection of the CNN’s hyperparameters 

performed by GA has influenced the final CNN 

model. The approach is particularly beneficial 

for real-world applications such as wheelchair 

control through thought, motor rehabilitation, 

stroke therapy, and sleep disorder treatment, all 

of which require accurate classifications. 

 

 

 

 
Table 4: Details of the CNN architecture. The GA optimized the number of convolution filters, size of filters, 

and dropout probability for each subject 

Subject 1  Subject 2  Subject 3 

 
Nu. of 

filters 

Filter 

size 
Dropout   

Nu. of 

filters 

Filter 

size 
Dropout   

Nu. of 

filters 

Filter 

size 
Dropout 

Conv1 39 22 x 1 0.12  Conv1 54 22 x 1 0.17  Conv1 30 22 x 1 0.22 

Conv2 57 1 x 7 0.28  Conv2 121 1 x 7 0.45  Conv2 80 1 x 24 0.32 

Conv3 251 1 x 12 0.37  Conv3 98 1 x 2 0.5  Conv3 192 1 x 8 0.3 

Conv4 472 1 x 6 0.23  Conv4 386 1 x 2 0.32  Conv4 290 1 x 12 0.32 

              

Subject 4  Subject 5  Subject 6 

 
Nu. of 

filters 

Filter 

size 
Dropout   

Nu. of 

filters 

Filter 

size 
Dropout   

Nu. of 

filters 

Filter 

size 
Dropout 

Conv1 64 22 x 2 0.23  Conv1 47 22 x 3 0.12  Conv1 54 22 x 2 0.38 

Conv2 121 1 x 1 0.41  Conv2 33 1 x 6 0.16  Conv2 123 1 x 7 0.32 

Conv3 242 1 x 7 0.18  Conv3 239 1 x 19 0.35  Conv3 126 1 x 21 0.26 

Conv4 334 1 x 9 0.48  Conv4 360 1 x 27 0.3  Conv4 162 1 x 30 0.23 

              

Subject 7  Subject 8  Subject 9 
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Nu. of 

filters 

Filter 

size 
Dropout   

Nu. of 

filters 

Filter 

size 
Dropout   

Nu. of 

filters 

Filter 

size 
Dropout 

Conv1 41 22 x 5 0.41  Conv1 54 22 x 2 0.23  Conv1 37 22 x 2 0.38 

Conv2 57 1 x 8 0.32  Conv2 94 1 x 9 0.28  Conv2 72 1 x 7 0.46 

Conv3 242 1 x 7 0.43  Conv3 242 1 x 7 0.37  Conv3 114 1 x 27 0.5 

Conv4 425 1 x 28 0.11  Conv4 472 1 x 12 0.48  Conv4 492 1 x 22 0.15 

 

 
Figure 6. Optimization of cropping parameters. The individuals’ fitness is evaluated across generations for various 

values of cropping window size and step size 

 
Figure 8. The convergence of GA over generations of individuals 

6. Conclusion 

The GACNN model is proposed in this 

study to address the overestimation problem in 

designing a deep network. GACNN employs the 

GA to supervise the construction of the CNN 

layers by optimizing the number of filters, size 

of filters, and dropout probability at each layer. 

Moreover, the model optimizes the window size 

and step size of cropping augmentation to 

generate adequate and appropriate training 

samples. 

Practical results demonstrate the superiority 

of GACNN compared to state-of-the-art studies. 
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It achieved high classification accuracy and fair 

sensitivity across different MI classes. 

Consequently, GACNN offers several 

advantages, including eliminating the burden on 

the programmer, preventing the trial-and-error 

method of selecting crucial hyperparameters 

related to the network and cropping 

augmentation, and producing a problem-fit deep 

network.  

The only disadvantage of GACNN is its 

requirement for a significant amount of time to 

complete the training process as GA makes a 

small step towards optimal hyperparameter 

values after an entire generation. However, this 

issue is not a major concern, as the training 

process occurs only once; thereafter, the model 

is ready for deployment. 

Additionally, the proposed model applies to 

other types of signals, particularly in the context 

of big data analysis. For future work, the 

following directions are suggested: 

• The experiments in this paper utilized 

offline training. The model may be 

examined in online training scenarios, like 

weather forecasting or stock market 

analysis. 

• The GACNN model may be extended to 

other types of signals beyond EEG, such 

as developing models for video 

classification or video captioning, as 

video analysis deals with massive 

datasets. 
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