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Gingival and periodontal diseases, such as gingivitis and periodontitis, are critical public 

health concerns that can lead to severe complications if left untreated. Early and precise 

diagnosis is crucial to mitigate the progression of these conditions and improve oral 

health outcomes. This study investigates the application of convolutional neural 

networks (CNNs) in diagnosing gingival diseases using medical images, including X-

rays and intraoral photographs. Several CNN architectures, including VGG16, 

Sequential CNN, MobileNet, InceptionV3, and suggestions for a voting method to 

enhance the prediction, were evaluated for their performance in classifying gingival 

conditions. MobileNet emerged as the most effective model, achieving a test accuracy 

of 92.73%; the suggested method relies mainly on its positive result. When the 

MobileNet's result is false, the process takes the voting result using the other methods. 

This boosts the accuracy to 96%. Surpassing other models in precision and recall 

metrics. Pre-processing techniques such as normalization using the CIELAB color space 

and data augmentation significantly enhanced model accuracy. The study employed 

robust evaluation methods, including 10-fold cross-validation and hyperparameter 

tuning, to ensure model reliability and generalizability. The findings highlight the 

transformative potential of AI-powered diagnostic tools in dental healthcare. By 

leveraging lightweight and efficient architectures like MobileNet, these tools can be 

deployed in resource-limited settings, offering real-time diagnostic support to healthcare 

professionals. Future work will focus on expanding datasets, exploring ensemble 

models, and improving interpretability to further enhance diagnostic accuracy and 

clinical applicability. This research demonstrates that CNN-based models can 

significantly improve the early detection and management of gingival diseases, 

contributing to better oral health and advancing the integration of AI in medical 

diagnostics. 
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1. Introduction  

Gingivitis is an inflammation of the gums or 

the lining tissues inside the mouth. It is usually 

the result of the accumulation of bacteria, 

plaque, tartar, mucus, and food between the 

teeth and gums. If this disease is not treated, 

abscesses and breaks will occur, the fibers 

linking the teeth to the gums will be destroyed, 

and the teeth will be removed. 
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Plaque is a soft, yellowish-white substance 

made from bacteria and debris. It is formed 

between teeth and along the gum line. Plaque 

must be removed by brushing and flossing, or it 

will harden to form tartar. Gingivitis is mainly 

caused by poor oral hygiene. Other factors that 

can contribute to gingivitis include an 

unbalanced diet and lifestyle. As is known, 

periodontal diseases are one of the essential 

reasons for tooth loss in adults [1]. 

https://djes.info/index.php/djes
mailto:mti.lec39.rana@ntu.edu.iq
https://djes.info/index.php/djes/article/view/1595
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Gingivitis is a non-destructive disease that 

affects the gums. The most common cause of 

gingivitis is a lack of oral hygiene, which causes 

bacterial plaque to accumulate continuously. 

The color change classifies it due to the 

inflammation of the gum, which is generally 

pink because of abnormal vessel dilation. 

Gingivitis can be healed, but if left untreated, it 

can lead to periodontitis. Gingivitis, left 

unchecked, leads to plaque development, an 

accumulation of white blood cells that are there 

to fight infection. Periodontal disease is also 

known as gum disease. It can lead to stroke, 

heart disease, osteoporosis, diabetes, and even 

premature babies for sufferers. Early prevention 

and treatment of this disease are essential to 

maintain oral cavity health [2, 3]. 

Periodontal disease is generally associated 

with plaque and calculus that accumulate 

beneath the gum. Individuals also have 

difficulty cleaning their teeth due to this 

accumulation, which increases the chance of 

bacterial infections. In the prognosis of 

periodontal bone loss in oral diagnosis, the 

clinical method involves taking panoramic 

radiographs [4]. The panorama shows a flat and 

panoramic image of the upper and lower 

jawbone, consisting of facial bones with 

adjacent teeth and surrounding structures. When 

reading panoramas, the position of the teeth and 

the thickness of the upper and lower jaws are 

assessed. Periodontal disease is diagnosed by 

measuring the pocket depth [5]. The following 

section offers a comprehensive literature 

review, focusing on prior research on applying 

deep learning in gingiva disease. The 

methodology segment provides an in-depth 

explanation of the dataset, the CNN 

architecture, the training procedure, and the 

evaluation metrics employed in this study. The 

results section discusses the model's training 

and validation findings, including performance 

metrics and an analysis of the model's diagnostic 

accuracy. Lastly, the paper concludes by 

summarizing the main insights and proposing 

directions for future research in this fast-

advancing field. The weaknesses of MobileNet 

were improved by incorporating a voting system 

with other models to enhance evaluation 

accuracy. The main contributions of the 

proposed voting-based ensemble method are as 

follows: 

• Used a diverse dataset (2,270 images), 

enhancing generalization. 

• Implemented data augmentation techniques 

to improve robustness. 

• Employed a voting-based model 

combination, unlike previous single-

model studies. 

• The proposed method offers a superior 

diagnostic system for gingival diseases 

and outperformed existing models' 

accuracy and reliability. 

The proposed method offers a superior 

diagnostic system for gingival diseases by 

implementing these enhancements. 

2. Literature review  

Edgardo Raphael Carillo et al., 2020, [6] 

developed a smartphone application in 2020 

utilizing a Convolutional Neural Network 

(CNN) that can accurately diagnose gum 

diseases, particularly gingivitis, with an 83.5% 

classification accuracy based on the study. This 

demonstrates the feasibility of smartphone-

based diagnosis but lacks a diverse dataset. 

Ammar F. Mohammed et al., 2022, [7] used 

a CNN-based approach, particularly VGG16, 

VGG19, and Xception models, to accurately 

predict periodontal teeth from X-ray images 

with up to 95% accuracy, aiding in diagnosing 

gingival diseases, high accuracy for X-ray-

based diagnosis but did not address real-time 

classification. 

D T Salunke et al., 2022, [8] used Various 

CNN architectures like U-Net, ResNet, VGG16, 

and AlexNet, which have been successfully 

applied in dentistry for tasks such as dental 

disease classification, tooth segmentation, and 

caries detection. This showcases the versatility 

and effectiveness of deep learning models in 

dental applications. It showcased CNN's 

versatility but lacked a performance comparison 

between architectures. 

H. Jayasinghe et al. 2022, [9] focused on 

diagnosing tooth-related diseases using Mask R-
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CNN on radiology images, achieving 75%-80 % 

accuracy in identifying dental caries, 

periodontal disease, tooth type, and restoration 

quality. They emphasized radiology-based 

diagnosis but had relatively lower accuracy. 

Marta Revilla-León et al., 2022 [10] 

introduced a review of Artificial intelligence 

models, including CNN, which show promise in 

diagnosing gingivitis and periodontal disease 

with accuracies ranging from 47% to 99%, 

provided a broad AI review but lacked direct 

implementation, effective for histopathology 

but not optimized for real-world application. 

Kevin Joy Dsouza et al., 2022 [11] used 

Histopathology image classification to diagnose 

gingival diseases, which is achieved using a 

Hybrid ResNet-152 architecture with 92% 

accuracy, as discussed in the paper, effective for 

histopathology but not optimized for the world. 

Kalita S. et al., 2023, [12] introduced A 

Novel Periodontal Disease Grade Classification 

Methodology using a Convolutional Neural 

Network that successfully diagnoses 

periodontal diseases, not specifically gingival 

diseases, achieving 94% accuracy with CNN 

models, strong periodontal disease 

classification, but focused less on gingival 

diagnosis. 

Wen Li et al., 2024, [13], CNN models like 

ResNet and GoogLeNet effectively diagnose 

chronic gingivitis from oral images, aiding in 

efficient periodontal disease identification by 

healthcare professionals or self-examining, 

showed CNN effectiveness in oral imaging but 

lacked ensemble model testing.  

The previous work uses various deep-

learning models but does not use model 

combinations to predict the results.  

3. Methodology  

3.1 CNN in medical image analysis 

Artificial Neural Networks (ANN), modeled 

by a computational method, have simulated the 

human brain to understand behavior. They use 

many interconnected processors to calculate, 

process, and store information. Deep learning 

has been introduced in medical image analysis, 

particularly in analyzing big data such as brain 

magnetic resonance, X-ray, and microscope 

images. Deep learning is a method for the 

decision-making process in various disease 

diagnoses, assisted by more complex training 

datasets and more complex models of 

hierarchical feature detectors with classifiers 

[14]. Convolutional Neural Networks (CNNs) 

have been developed using ANN and deep 

learning to recognize patterns in the training 

stage. ANNs have been applied to various fields, 

such as analyzing complex behaviors, fault 

detection, and medicine. Convolutional Neural 

Networks (CNNs) are a category of neural 

network architectures with an edge over other 

ANNs for processing varying stride 

transformations with less complexity. CNNs 

also efficiently handle image data to solve 

multiple image-based classification problems. 

Deep learning has evolved, leading to the design 

of convolutional neural network (CNN) 

architectures to extract image features and 

classify them. These lesser-known CNN 

architectures are used to solve image 

classification problems [15]. 

The basic concepts of CNN architecture are 

convolutional, pooling, fully connected layers, 

activation, loss, and optimization. The 

Convolutional Layer (CL) is prevalent in CNN 

architectures. It is the core of the CNN network, 

and a set of convolutional filters (kernels) with 

sizes like 3x3 or 5x5 are applied over the input 

data image pixels using component-wise 

multiplication and addition. The Pooling Layer 

(PL) is the second important layer used in 

CNNs, where the input image size is reduced. 

Fully connected layers and an output layer, 

which act as a classifier, boost the classification 

accuracy. Pooling the transferred feature maps 

using Average pooling and Max pooling 

methods performs the training process in a less 

complex manner and improves the dimension 

size of feature maps. Rectified Linear Units 

(ReLU) is an element-wise operation used to 

convert feature maps with non-linearity by 

filtering out negative values and setting the 

maximum value as 0. Loss, Optimization, and 

Activation Functions: The obtained feature 

maps are globally reduced to a single value for 

each output neuron using fully connected layers. 

The vector 'x' is the previous layer input given 

by Eq. 1[16, 17].  
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𝐽(𝑋, 𝑊, 𝑏) = ∑  

𝑛

𝑖=0

𝐻(𝑋𝑖) +  𝐿(𝑊, 𝑏)         (1) 

where J(.) is the function to minimize the 

error between the actual output and the 

estimated output of the neural network, H(.) is 

the activation function, and L refers to the 

regularization errors. W and b are the 

parameters used in fully connected layers. 

3.2 Oral image dataset 

The investigation is also based on the oral 

pictures. The total number of data is 2270 high-

resolution images. Based on the oral images, 

negative gum, and periodontal disease pictures 

were combined with negative images to 

document the percentage of gingivitis. 

According to existing survey data, the following 

simple four-level classification simulation is 

used for gingivitis. Photos of healthy tissue were 

used as negative control data. Considering the 

horizontal reflection and cosmetic flaws. 

Color photos of oral lesions taken using 

intraoral and mobile cameras are included in the 

dataset. By using image analysis, possible oral 

cancers can be detected in these pictures. After 

consulting with medical professionals from 

several hospitals and colleges in Karnataka, 

India, these photos were taken. Original_data 

and augmented_data are the two folders that 

make up this dataset. Images of 1155 benign 

lesions and 1015 malignant lesions are included 

in the first folder. A sample of these images is 

shown in Figure 1. The photos produced by 

enhancing the original images are in the second 

folder. Flipping, rotating, and resizing are the 

applied augmentation procedures [18,19]. 

 

 

Figure 1: Samples of oral image dataset  

 

3.2 Oral image dataset 

This study also utilized relevant image 

preprocessing and augmentation methods for 

the proposed datasets. Some of these examples 

are carried over from transfer learning. The best 

cropping rectangle for surgery pattern images 

was identified with a developed novel Python 

code using image quantization. This new 

technique, which involves training an ICCS-

Train CNN Model, was conducted with a 

learning rate of 0.0001 and a batch size of 32. 

This was validated using two different models, 

namely CNN-1 and CNN-2. Visual tools for the 

confusion matrix for classes were utilized to 

validate these newly developed models. This 

tool for the top-1 accuracy map with AI-based 

analysis was also used. 
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In the proposed classification model, the 

CIELAB color space was used to represent 

original images because the Colorado State 

University relational database-cover images in 

the CIELAB color space performed better 

regarding restored color-language accuracy. 

The data during the model-training process was 

normalized to make the initial weights, model-

training process, and learning easier. This 

process helped the CNN model use the data 

correctly in the training process to learn the 

model weights precisely. This also made the 

ANN model more predictable to avoid cost 

function divergence during the training process. 

Further, this process made the gradients and 

weights predictable during model training for 

convergence purposes [20 - 22]. 

3.4 Training and Testing CNN Models  

Here, the training and testing of models will 

be discussed using K-fold cross-validation, 

hyperparameter tuning with grid search, and 

random search methods. To compare the 

performance of models, the dataset containing 

323 oral images was used, divided into majority 

and minority classes. Approaches' data are not 

oversampled since this is unsuitable for the best 

practice in AI development models. Random 

and grid searches are used for parameter 

searching to obtain the best hyperparameters for 

the AI model. As a result, the grid search for AE 

and transfer learning works well for training and 

testing models, while the CNN model works 

well using the random search method. This 

makes each experiment different when using an 

image dataset. The dataset must be split before 

the system is implemented to train and test the 

algorithms. 

In this research, 10-fold cross-validation 

was used, with one set of 10% of the data used 

for training, another 10% of the data for 

validation, and the rest for testing. 10-fold cross-

validation is widely known as the best way of 

evaluating the robustness of the algorithms by 

using ten different test subsets and ten training 

subsets. Each fold differs from the others, so the 

disease images are randomly distributed. The 

dataset consists of n = 2270 oral images labeled 

as images with disease or normal results. In 

general, the experimental analysis comprises 1) 

developing the CNN model for diagnosis, 2) 

quantitative measurements, 3) random search 

and validation, and 4) training and suspected 

hyperparameters or best practices for the AI 

system [23 - 25]. 

3.5. Data Splitting and Cross-Validation 

The data-splitting step is essential for 

training and testing artificial intelligence 

models, especially those based on convolutional 

neural networks (CNNs). Data splitting is 

essential to obtain a very diverse collection of 

data for training and test processes. For training 

and testing CNN models, weighted random 

splitting was used, with an extra multiplicative 

factor, compared with a random shuffling 

process for the data split. Weighted splitting 

removes the high similarity of images between 

the training/validation and testing processes, 

which would generate an overestimation of 

testing model metrics. Here, β = 0.9 was set and 

was added to the ratio between healthy and 

disease-providing datasets to weigh the final 

split between these classes. 

Cross-validation, a performance analysis 

technique, tests how well the models generalize 

to an independent dataset. This approach 

minimizes the risk of overfitting and 

underfitting. 

The K-Fold cross-validation method was 

used. K-fold cross-validation starts by randomly 

shuffling the data. Then, the data was divided 

into K equal or as close as possible parts. For 

each part, an algorithm model is trained on the 

remaining K-1 parts and tested on the part. 

Then, the process happened exactly K times (the 

K-folds), with the test fold changed for each 

iteration. Finally, a metric, the mean, and the 

standard deviation of the K-folds are calculated. 

Here, the Stratified K-Fold method was used, 

where the sample portions in each class were 

kept the same over distinct testing folds [26, 27, 

28]. 

3.6. Performance evaluation metrics 

As discussed earlier, the objective of AI-

type image analysis models is to provide a 

second opinion to dentists regarding oral health 
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conditions occurring in patients' teeth and gums 

by diagnosing if any oral health-related 

abnormalities are present in the image. The 

reliability of such tools is most important from 

the viewpoint of patient safety; hence, 

performance evaluation of such tools must be 

carried out to evaluate their performance while 

considering the ability of such tools to identify 

positive patients against negative patients 

correctly. Foundational to this are the following 

distinct performance metrics for medical image 

analysis [29]. In this paper, the results of the 

four models are combined. Since the MobileNet 

model has the highest accuracy, its results are 

considered a high priority in conjunction with 

voting between the three other models, as 

described in Figure 2. The system uses the 

majority weighting decision rule among the 

three remaining models (i.e., VGG16, 

Sequential CNN, and InceptionV3) when the 

MobileNet result is false. 

Due to its robust accuracy, the MobileNet 

model is the primary diagnostic tool in this 

study. If the MobileNet model yields a negative 

result, a majority vote among the remaining 

models determines the diagnosis. This approach 

ensures a balanced consideration of multiple 

analytical perspectives, enhancing the overall 

reliability of the diagnostic process. Figure 3 

shows the general structure of the stages of the 

proposed system. 

 

Figure 2. Scheme of new method suggested 

  

Figure 3. Proposed system general structure 
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Accuracy is the proportion of correct 

predictions against all total predicted samples. It 

is calculated using Eq. 1. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑇𝑃 +  𝑇𝑁

 𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁 +  𝑇𝑁
      (1) 

  

Sensitivity is the proportion of positive 

samples predicted as positive cases and the 

percentage of false negatives to the actual 

positive samples. It is calculated using Eq. 2. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

 𝑇𝑃 +  𝐹𝑁
                              (2) 

Specificity is defined as the proportion of the 

negative samples predicted as negative cases 

and the percentage of false positives to the 

actual negative samples. It is calculated using  

Eq. 3:  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
 𝑇𝑁

 𝑇𝑁 +  𝐹𝑃
                            (3) 

F1 Score is known as a harmonic mean of 

precision and recall, and it can provide more 

accurate metrics for classes that are mistakenly 

classified than the accuracy measure. It is 

calculated using Eq. 4.  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑇𝑃

 2𝑇𝑃 +  𝐹𝑃 + 𝐹𝑁 
                    (4) 

4. Results 

This research used four CNN deep-learning 

training models. The first model is VGG16, and 

the results in this model were:  

Test Score:  0.6948 

Test accuracy:  0.4758 

The average training accuracy is equal to 

0.5171 after epoch 100, validation accuracy is 

equal to 0.4758 after epoch 100, the validation 

loss is equal to 0.6948 after epoch 100, and the 

training loss is equal to 0.6929 after epoch 100 

as mistakenly classified classes Figure 4a, the 

Confusion Matrix shown in Table 5 and 

Classification Report shown in Table 1. 

The second model is the Sequential CNN 

model; the results of this model were:  

Test Score:  1.4169 

Test accuracy:  0.8128 

 After epoch 300, the average training 

accuracy is equal to 0.9994, the validation 

accuracy is equal to 0.8128, the validation loss 

is equal to 1.4169, and the training loss is equal 

to 7.716, as shown in Figure 4b, the Confusion 

Matrix shown in Table 5 and the Classification 

Report shown in Table 2. 

The Third model is the MobileNet_CNN 

model; the results of this model were:  

Test Score:  0.6353 

Test accuracy:  0.9273 

The average training accuracy is equal to 

0.9928 after epoch 100, validation accuracy is 

equal to 0.9273 after epoch 100, the validation 

loss is equal to 0.6353 after epoch 100, and the 

training loss is equal to 0.0169 after epoch 100 

as in Figure 4c, the Confusion Matrix shown in 

Table 5 and Classification Report shown in 

Table 3. 

The fourth model is an InceptionV3_CNN 

model; the results in this model were  

Test Score:  0.364 

Test accuracy:  0.9163 

 The average training accuracy is equal to 

0.9642 after epoch 100, validation accuracy is 

equal to 0.9163 after epoch 100, the validation 

loss is equal to 0.3640 after epoch 100, and the 

training loss is equal to 0.0897 after epoch 100 

as in Figure 4d, the Confusion Matrix shown in 

Table 5 and Classification Report shown in 

Table 4. 

This research compared the four models to 

choose the best model for future CNN training. 

Table 9 compares 100 epochs for training and 

validation for VGG16, Sequential, MobileNet, 

and Inspection-v3 in the CNN deep-learning 

Model. 

This paper uses a 20% validation ratio; this 

ratio's use in the model results in a validation 

accuracy of 96% for the New Method 

suggested,92% for MobileNet, 91% for 

Inspection-v3, 81% for Sequential, and 47% for 

VGG16. 
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Table 1: Classification Report of VGG16 Model 

 Precision Recall f1-score Support 

 Class   0 0.48 1.00 0.64 216 

 Class  1 0.00 0.00 0.00 238 

accuracy   0.48 454 

macro avg 0.24 0.50 0.32 454 

weighted avg 0.23 0.48 0.31 454 

 

Table 2: Classification Report Sequential CNN Model 

 Precision Recall f1-score Support 

 Class   0 0.83 0.82 0.82 240 

 Class  1 0.80 0.81 0.80 214 

 accuracy   0.81 454 

 macro avg 0.81 0.81 0.81 454 

weighted avg 0.81 0.81 0.81 454 

 

Table 3: Classification Report of MobileNet_CNN Mode 

 Precision Recall f1-score Support 

Class   0 0.96 0.89 0.93 232 

Class    1 0.90 0.96 0.93 222 

accuracy   0.93 454 

macro avg 0.93 0.93 0.93 454 

weighted avg 0.93 0.93 0.93 454 

 

Table 4: Classification Report InseptionV3 Model 

 Precision Recall f1-score Support 

Class  0 0.90 0.94 0.92 229 

Class  1 0.94 0.89 0.91 225 

accuracy   0.92 454 

macro avg 0.92 0.92 0.92 454 

weighted avg 0.92 0.92 0.92 454 

 

Table 5: Comparison Table Between Four CNN Models and new method suggested 

Model 
validation 

accuracy 

Actual: No 

Predicted: 

No 

Actual: No 

Predicted: 

Yes 

Actual: Yes 

Predicted: 

No 

Actual: Yes 

Predicted: Yes 

Accuracy of test 

data Rate 

% 

Support 

VGG16 0.476 216 0 238 0 47.58% 454 

Sequential 0.813 196 44 41 173 81.28% 454 

Inspection-v3 0.916 216 13 25 200 91.63% 454 

MobileNet 0.927 207 25 8 214 92.73% 454 

New Method 

Suggested 
0.960 216 12 6 173 96% 454 
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a) 

  
b) 

  

c) 

  
d) 

Figure 4. Accuracy and Loss for the models (a) VGG16, (b) Sequential_CNN, (c) MobileNet, and (d) InceptionV3. 

Table 6: Comparison with related studies 
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Study 
Deep Learning 

Techniques Used 
Dataset Name & Sample Size 

Accuracy/

Results 

[6] 
Convolutional Neural 

Network (CNN) 
Smartphone-captured images (200 gum images) 83.5% 

[7] VGG16, VGG19, Xception X-ray images (1,044 images) 95% 

[8] 
U-Net, ResNet, VGG16, 

AlexNet 

Various dental image datasets (different sizes of 

images) 
80% 

[9] Mask R-CNN Radiology images (5,121 panoramic radiographs) 75%-80% 

[10] Multiple CNN architectures 
Various AI-reviewed datasets (24 studies on AI models 

for diagnosing gingivitis and periodontal disease) 
47%-99% 

[11] Hybrid ResNet-152 Histopathology images (7,900 microscopic images) 92% 

[12] CNN-based methodology Periodontal disease dataset (1,752 bite-wing images) 94% 

[13] ResNet, GoogLeNet Oral images dataset (3625 images) 90% 

New Method 

Suggested 

MobileNet, InceptionV3, 

Sequential CNN, VGG16 
Oral image dataset (2,270 images) 96% 

 

 

The proposed system was compared with 

closely related studies regarding accuracy, 

dataset name, and sample size, as shown in 

Table 6. The proposed method achieved 96% 

accuracy, surpassing previous studies like 

MobileNet (92.73%) and InceptionV3 

(91.63%). Unlike earlier works, this method 

integrated multiple CNN architectures and a 

voting mechanism to enhance predictions.  

 

5. Conclusion 

This research explored the application of 

deep learning CNN for diagnosing gingival and 

periodontal diseases and suggested a voting 

method to enhance the prediction. To identify 

their strengths and limitations in medical image 

classification, the study assessed various CNN 

architectures, including VGG16, Sequential 

CNN, MobileNet, and InceptionV3. MobileNet 

emerged as the top-performing model with a test 

accuracy of 92.73%, followed by InceptionV3 

at 91.63%. In contrast, the VGG16 model 

achieved only 47.58% accuracy, struggling due 

to overfitting and limited generalization 

capabilities. Since MobileNet's lightweight 

architecture demonstrated exceptional precision 

and recall, the suggested method relies mainly 

on its positive results. When the MobileNet's 

result is false, the process takes the voting result 

using the other methods. This boosts the 

accuracy to 96%. 

The research highlighted the importance 

of preprocessing techniques like normalization 

using the CIELAB color space and advanced 

data augmentation methods (e.g., flipping, 

resizing, and rotation) in enhancing model 

performance. These approaches helped models 

effectively manage real-world dataset 

variations. Robust validation techniques, 

including 10-fold cross-validation and 

hyperparameter tuning through grid and random 

search, ensured model reliability and mitigated 

overfitting risks. 

This study underscores the potential of 

MobileNet as a practical diagnostic tool for 

gingival diseases, especially in settings 

requiring lightweight and portable solutions. By 

providing accurate and efficient diagnostics, 

such AI-driven tools can support healthcare 

professionals as a second opinion, improving 

diagnostic precision and enabling early 

interventions. Future work could focus on 

expanding datasets, integrating models with 

clinical workflows, developing ensemble or 

hybrid approaches, and ensuring the model 

explains its ability to foster trust among 

healthcare providers. 
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