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Traffic congestion remains a major challenge in urban areas due to the high cost, 

scalability issues, and inefficiencies of traditional monitoring systems. This study 

proposes an innovative, cost-effective traffic monitoring system utilizing Android-based 

Smart Roadside Units (RSUs) to detect vehicles and analyze real-time traffic data. The 

system leverages the You Only Look Once, version 8 (YOLOv8) model, enhanced with 

the Slicing Aided Hyper Inference (SAHI) algorithm to improve detection accuracy for 

small and distant objects. Field experiments were conducted using three Android device 

categories high, medium, and low-cost to assess detection accuracy across different 

distances. Results indicated that high-cost devices could accurately detect vehicles up 

to 500 meters away, whereas medium and low-cost devices exhibited reduced detection 

accuracy and range.  The findings highlight the impact of hardware specifications and 

environmental conditions on system performance. The proposed approach addresses 

limitations of conventional traffic monitoring by providing an adaptable, open-source 

infrastructure that reduces hardware costs while ensuring real-time processing. Utilizing 

mobile devices enhances scalability and cost-effectiveness compared to traditional 

RSUs, which are expensive and hard to deploy at scale. Future research will integrate 

functionalities like pedestrian detection and vehicle tracking to further enhance smart 

transportation systems. This study demonstrates the feasibility of Android-based RSUs, 

offering a practical alternative to conventional methods and advancing intelligent traffic 

management solutions.  
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1. Introduction  

With urban expansion and an increasing 

population, traffic congestion has become a 

significant challenge that requires effective 

solutions. Traffic control is essential to reduce 

the negative impacts on the economy, the 

environment, and the quality of life. Urban 

populations are projected to increase from 54% 

in 2014 to 66% by 2050 [1,2], leading to higher 

traffic volumes and exacerbating congestion. 

Traditional methods of expanding road 

networks are often unsustainable due to land 
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constraints and high costs while improving 

traffic control systems provides more feasible 

solutions for managing the increased demand 

for transportation services [2,3]. Traffic 

congestion affects various aspects of urban life, 

including:  

1. Economy: Longer travel times reduce 

productivity, increase costs for businesses 

and consumers, and affect the quality of life 

[4,5]. 

2. Environment: Emissions from vehicles 

contribute to air pollution and climate 

change [3,6,7]. 
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3. Quality of Life: It affects daily life by 

increasing stress levels among commuters, 

reducing the time available for personal 

activities, and contributing to a general 

decline in urban livability. and life 

satisfaction in urban areas [3,7]. Figure 1 

illustrates the Traffic congestion effect. 

To overcome the challenges of traffic 

congestion, Intelligent Traffic Management 

Systems (ITMS) have emerged as an advanced 

solution that relies on artificial intelligence, 

sensor networks, and data analysis to improve 

traffic flow and enhance safety. The advantages 

of these systems include real-time traffic 

monitoring [8], predictive analytics [9], 

adaptive signal control [10], vehicle-to-

infrastructure communication [8], accident 

reduction [11], emergency response 

optimization [12] and sustainability [13]. Figure 

2 illustrates the key features of ITMS. 

 

 

Figure 1.  Illustrates traffic congestion effect. 

 

Figure 2. Illustrates key features of ITMS 

Traditional traffic monitoring systems rely 
on RSU units but face challenges related to high 
costs, difficulty in scaling, and delays in data 
processing. These systems include technologies 
such as inductive loops, camera-based systems, 
Radio Frequency Identification (RFID) sensors, 
and microwave radar. Despite their 

effectiveness in specific applications, high costs 
and scalability issues pose significant barriers. 
The challenges include: 

1. High deployment costs. 

2. Difficulty in scaling in large urban areas. 

3. Maintenance complexity. 
4.  Delays in data processing due to network 

congestion. 

YOLOv8, an advanced object detection 
model developed by Ultralytics, represents a 
significant evolution in the YOLO series. 
Designed for real-time applications, YOLOv8 
combines high accuracy and efficiency, making 
it suitable for diverse tasks such as autonomous 
vehicles, surveillance, and robotics [14-16]. 

Key features of YOLOv8 include real-time 
object detection, continuous improvement 
across versions, resource efficiency, and an 
open-source design under the AGPL-3.0 license 
[17-19].  

YOLOv8 was chosen for its superior 
performance, combining high accuracy with fast 
processing speeds, making it ideal for tasks 
requiring real-time object detection. Its 
architectural improvements further enhance its 
efficiency and scalability [16]. 

The efficiency of YOLO-based models has 
been demonstrated in various domains. For 
instance, Yousif et al. [20] utilized YOLOv7 
and Video Swin Transformer for assisting 
visually impaired individuals by providing real-
time video descriptions. Our study builds upon 
this foundation, employing YOLOv8 and SAHI 
for enhanced traffic monitoring. 

This work makes several key contributions to 
the field of traffic monitoring systems: 

1. Innovative Traffic Monitoring System: 

 The system proposes to integrate advanced 
AI technologies such as YOLOv8 with Android 
devices at different cost levels (low, medium, 
high) to achieve an optimal balance between 
accuracy and economic efficiency. 

 The system enables road monitoring, vehicle 
detection, and congestion identification with 
high accuracy using affordable and available 
devices. 

2. Reducing the cost of high-performance 
devices: 
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Using high-performance devices that provide 
detection accuracy of up to 85% for a distance 
of 500 meters, at an economical cost ($250 per 
unit), is a qualitative leap compared to 
traditional systems that cost between $1,500 and 
$17,680[21]. 

3. Open-source infrastructure: 

The system provides an open-source 
architecture that allows future development and 
the addition of new functions, such as pedestrian 
monitoring, vehicle plate recognition, vehicle 
tracking, and speed measurement. 

4. New framework for RSUs: 

Development of an Android-based RSU 
framework to provide efficient traffic 
monitoring. 

5. Experimental performance analysis: 

Experimental performance analysis across 
different devices with various specifications to 
evaluate performance under different operating 
conditions. 

6. Discuss challenges and adaptability: 

Discuss the system's ability to adapt to 

different environments, highlighting 

environmental challenges such as lighting 

and natural interference.In this paper, we 

cover the following sections: Section 2: Related 

works, Section 3: Overview of the proposed 

system, Section 4: Methodology, Section 5: 

Results, Section 6: Discussion of the results, and 

Section 7: Conclusions. 

2. Related works 

To enhance RSU-based traffic monitoring, 
numerous strategies have been explored with a 
focus on cost-effectiveness and improved data 
collection. One approach is the use of 
inexpensive sensors, which are simpler and 
more affordable to implement in urban settings 
compared to traditional equipment. For 
example, a system leveraging Wi-Fi signal 
variations achieved a vehicle classification 
accuracy between 83% and 100% [22], while 
another employed embedded neural networks to 
classify vehicle types and speeds with 96% 
accuracy [23]. Mobile devices have also been 
proposed for low-cost traffic data collection, 

using error correction algorithms to enhance 
reliability [24]. Additionally, the Internet of 
Things (IoT) and fog computing have been 
integrated into low-cost monitoring systems, 
recording vehicle locations via Global 
Positioning System (GPS) to analyze traffic 
patterns [25]. Other innovative solutions, such 
as the Sense Magnetometer (SenseMag) [26], 
Wireless Traffic Monitoring System 
(WiTraffic) [27], and edge computing with 
Long Range Wide Area Network (LoRaWAN) 
[28] and Bluetooth Low Energy (BLE) [29], 
further improve vehicle detection and 
classification accuracy while remaining cost-
efficient. However, low-cost systems may 
encounter limitations in accuracy and reliability 
due to environmental factors. 

Mobile sensing offers another promising 
solution for enhancing RSU functionality by 
using vehicle-mounted sensors for broader 
coverage, thereby reducing the need for a dense 
RSU network. This approach leverages existing 
vehicles to reduce infrastructure costs. 
Examples include data collection via bus fleets 
[30], vehicle-to-vehicle (V2V) communication 
protocols for direct vehicle data exchange [31], 
and cooperative multi-agent systems with edge 
computing to estimate traffic density [32] and 
on-demand mobile sensing frameworks that 
utilize vehicle owners' devices for road 
condition monitoring [33]. Nonetheless, mobile 
sensing may face data reliability issues in low-
density areas. 

Cloud-based RSU systems centralize data 
processing, lowering the computational 
demands on individual RSUs and enabling 
scalability for expanding traffic requirements. 
Cloud-assisted mobile crowd-sensing has been 
applied to traffic data collection, which 
improves congestion estimates and supports 
proactive driver guidance [34]. However, such 
systems require stable network connectivity, 
and data security remains a concern. 

Finally, fog computing and green 
technologies have been investigated to reduce 
latency and enhance real-time processing in 
traffic systems. Fog-based Vehicular Ad Hoc 
Network (VANET) infrastructures facilitate 
V2V and vehicle-to-RSU communication while 
decreasing energy usage [35]. Solar-powered 
smart camera-RSU platforms provide a low-
cost, energy-efficient monitoring solution, 
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supporting continuous operation even in 
changing weather conditions [36].  

Although significant progress has been made 
in previous research, key gaps remain, such as: 

• The lack of affordable solutions that match the 
performance of traditional RSUs. 

• Limited scalability for large urban areas. 

• Challenges in real-time data processing. 

Furthermore, current road monitoring and 
traffic control systems heavily rely on expensive 
hardware and wireless networks such as Ad-
hoc. These systems face significant challenges 
in terms of range and efficiency. They often 
require advanced infrastructure and fail to 
provide effective real-time monitoring, leading 
to increased traffic accidents and congestion in 
urban areas. Additionally, few studies have 
explored the use of commercially available 
mobile devices as RSUs, which could greatly 
reduce costs and enhance flexibility. 

This paper aims to develop an innovative 
Android-based smart RSU system to provide a 
scalable, cost-effective solution for traffic 
monitoring. The system will be designed using 
mobile devices from various cost categories 
(high, medium, low) and integrate advanced 
object detection algorithms like YOLOv8 and 
SAHI to enhance detection accuracy, especially 
for small or distant objects. 
 The paper proposes an alternative to traditional 
RSUs, demonstrating how Android-based 
devices can process real-time data over 4G 
networks, offering continuous traffic updates to 
users. Existing traffic monitoring systems 
exhibit various strengths and weaknesses, as 
summarized in Table 1. The table highlights the 
unique advantages of the proposed Android-
based RSU system, such as improved 
scalability, cost-efficiency, and adaptability, 
compared to traditional techniques like IoT with 
fog computing or inexpensive sensors. 

Table 1: Comparison of existing traffic monitoring techniques with the proposed system 

References 
Comparison with Proposed 

System 
Disadvantages Advantages Technique 

[22] 

Less flexible and scalable than 

the Android-based system 

proposed, which allows dynamic 

adjustments for varied devices. 

Limited reliability in 

environmental 

fluctuations. 

Low cost; suitable for 

urban settings; high 

classification accuracy 

(83%-100% using Wi-Fi 

variations). 

Inexpensive 

Sensors 

[23] 

Similar computational demands, 

but YOLOv8 with SAHI offers 

better scalability across hardware 

tiers. 

Computationally 

intensive; hardware-

dependent. 

High accuracy (96% for 

type and speed 

classification). 

Embedded 

Neural 

Networks 

[25] 

Proposed system enhances real-

time data with 4G networks and 

Android-based versatility. 

Latency issues; 

limited real-time 

capabilities. 

Low-cost monitoring; GPS-

based traffic analysis. 

IoT with 

Fog 

Computing 

[26] 

Android-based approach 

integrates multiple detection 

methods for broader adaptability. 

Limited to specific 

environments and 

magnetic fluctuations. 

Non-invasive; cost-efficient 

for vehicle detection. 

SenseMag 

(Magnetic 

Sensing) 

[27] 

Proposed system offers extended 

ranges with camera-based 

detection. 

Requires WiFi 

infrastructure; lower 

detection range. 

Low-cost; non-intrusive. 

WiTraffic 

(WiFi-

based) 

[30], [31], 

[32], [33] 

Android-based RSUs can be 

strategically placed, ensuring 

consistent coverage even in low-

density zones. 

Data reliability issues 

in low-density areas. 

Broader coverage using 

existing vehicles; reduces 

need for dense RSU 

deployment. 

Mobile 

Sensing 

(Vehicle-

Mounted) 

[34] 

Proposed system focuses on 

local processing to reduce 

dependency on continuous cloud 

connectivity. 

Requires stable 

network connectivity; 

data security 

concerns. 

Centralized processing 

reduces RSU computational 

demands; scalable for 

expanding urban needs. 

Cloud-

Based 

RSUs 

[35], [36] 

Android-based system is power-

flexible and adaptable across 

various energy sources. 

Dependence on 

environmental 

conditions for energy 

generation. 

Low latency; energy-

efficient with solar-

powered smart RSUs. 

Fog 

Computing 

with Green 

Tech 
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3. Proposed system overview 

This section, presents the design and 
development of a smart RSU system that aims 
to improve traffic monitoring in urban areas and 
highways using advanced artificial intelligence 
techniques, this study to develop and implement 
smart RSUs as an essential part of intelligent 
transportation system (ITS) for smart city 
applications, focusing on providing low-cost 
solutions to improve transportation efficiency in 
urban areas and highways. We will experiment 
with different Android smart devices with 
varying performance to choose the most suitable 
one to be a smart roadside monitoring unit that 
can capture images and send them to a control 
monitoring center (CMC) for data processing, as 
well as receive and broadcast final reports on 
road conditions to end users. We aim is to find 
the optimal device that can be deployed in urban 
areas and highways efficiently and reliably. The 
CMC architecture consists of four specialized 
servers, each with its distinct functional role.  
This research mainly focuses on the first server, 
concerned with vehicle detection, recognition, 
and counting. The first server uses advanced 
deep learning models such as YOLOv8 and the 
SAHI algorithm process the images received 
from the smart RSUs, ensuring the accuracy of 
detection, traffic flow analysis, and congestion 
detection. The implementation of YOLOv8 on 

Android can be approached in three main ways: 
either the Android device itself captures and 
processes the image locally, edge computing is 
employed, or by using remote servers. In our 
case, YOLOv8 and SAHI are hosted on a server 
located in a central control and monitoring 
center, where the analysis is performed. This 
allows the Android device to act primarily as an 
interface for capturing and sending images to 
the server, with all computationally intensive 
tasks offloaded to the centralized infrastructure. 
At the same time, Android devices are used to 
broadcast reports of traffic conditions to end-
users. Future research may explore the 
feasibility of implementing the first and second 
approaches to evaluate their effectiveness in 
various scenarios.  
 The second server analyses road conditions, 
detects accidents, and performs maintenance 
using AI techniques, while the third server 
generates statistical reports related to traffic 
density and road conditions.  

In addition, a Hypertext Transfer Protocol 
(HTTP) server is used to receive images and 
forward them to servers 1 and 2 for further 
processing. This paper does not address the 
functions of other servers, as they will be 
addressed in future work, and the main goal here 
is to focus on the first server. Figure 3 illustrates 
the structure of the proposed system. 

 

Figure 3. Proposed system architecture 
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Real-time processing is achieved, as evidenced 
by the following processing rates: 

• Smart RSUs: Capable of handling 30,000 
packets per second [37]. 

• HTTP Server: Processes up to 100,000 
packets per second [37]. 

• YOLO+SAHI Server: Each server can 
process 55 images per second when 
utilizing optimized frameworks such as 
TensorRT [38]. 

• Chat GPT-4O Server: Similarly, each server 
can handle 55 images per second [39]. 

To manage these processing demands, the 
system relies on four servers, with each server 
assigned specific tasks based on its processing 
capacity. The division of labor ensures that 
high-throughput requirements are met, and 
bottlenecks are avoided. This approach 
leverages the efficiency of modern hardware 
accelerators like NVIDIA GPUs and AI-
optimized infrastructure to support the 
computationally intensive operations of 
YOLOv8 and SAHI, while simultaneously 
meeting the real-time constraints of packet and 
image processing. 

The system is based on an open-source 
infrastructure, which provides flexibility for 
future extensions, such as integrating pedestrian 
monitoring, license plate recognition, and 
vehicle speed measurement. This architecture 
contributes significantly to the enhancement of 
smart transportation infrastructure within urban 
environments, delivering comprehensive 
solutions to the challenges posed by traffic 
congestion and road management. 

A. System process sequence 

 The smart RSUs initiate the process by capturing 
images of the road, which are transmitted via the 4G 
network to the HTTP server. This server then 
forwards the images to Servers 1 and 2 for 

processing. Once the processing is completed, the 
resulting data is transmitted to Server 3, which 
prepares detailed reports on traffic and road 
conditions. These reports are subsequently sent back 
through the 4G network to the smart  RSUs, which 
broadcast real-time updates via Wi-Fi, allowing end 
users to access the information through a dedicated 
application that provides a city map with real-time 
road and traffic conditions. 

B. System Architecture 

1- Smart RSUs 

The smart RSUs are a critical component of the 

ITS, providing efficient traffic monitoring 

capabilities. These units are based on open-

source Android devices and utilize open 

detection models, such as YOLOv8, to enhance 

transportation efficiency. The proposed smart 

RSUs consist of mobile devices equipped with 

processors, memory, Global System for Mobile 

Communications (GSM), Wireless Fidelity 

(Wi-Fi), and battery power. The experimental 

evaluation was conducted using smartphones of 

varying quality to determine the optimal device 

for smart RSU deployment. The details of the 

selected phones are presented in Table 2 [40-

42]. The devices were mounted on stable 

platforms to control image capture angles and 

enhance image stabilization. Performance 

comparisons were made based on image 

resolution, quality, and their impact on vehicle 

detection accuracy. The smart RSUs are a 

critical component of the ITS, providing 

efficient traffic monitoring capabilities. These 

units are based on open-source Android devices 

and utilize open detection models, such as 

YOLOv8, to enhance transportation efficiency. 

The proposed smart RSUs consist of mobile 

devices equipped with processors, memory, 

Global System for Mobile Communications 

(GSM), Wireless Fidelity (Wi-Fi), and battery 

power.  

Table 2: Specifications of the Selected Proposal Smart RSUs 

Price of 

device 
Mobile device camera resolution Released 

Mobile device 

name 

Mobile phone 

category 

78 $ 
Triple, 16 MP, f/1.8 (wide), AF; 8 MP, f/2.2 

(ultrawide); 2 MP, f/2.4 (depth) 
Oct-21 ZTE Blade A71 LOW 

85 $ 
Quad, 48 MP, f/1.8 (wide), PDAF; 8 MP, f/2.2 

(ultrawide); 5 MP, f/2.4 (macro); 2 MP, f/2.4 (depth) 
22-Jan-21 

Samsung Galaxy 

A32 5G 
Medium 

257 $ 

Quad, 108 MP, f/1.8 (wide), PDAF, OIS; 10 MP, f/2.4 

(telephoto), OIS, 3x optical zoom; 10 MP, f/4.9 

(periscope telephoto), OIS, 10x optical zoom; 12 MP, 

f/2.2 (ultrawide), Super Steady video 

29-Jan-21 
Samsung Galaxy 

S21 Ultra 
High 
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The experimental evaluation was conducted 

using smartphones of varying quality to 

determine the optimal device for smart RSU 

deployment. The details of the selected phones 

are presented in Table 1. The devices were 

mounted on stable platforms to control image 

capture angles and enhance image stabilization. 

Performance comparisons were made based on 

image resolution, quality, and their impact on 

vehicle detection accuracy. It is worth noting 

that the device classifications (low, mid-range, 

and high-end) are based on the classifications 

provided by the manufacturers themselves, 

which take into account a wide range of 

technical and commercial factors, including 

overall performance, camera quality, and 

hardware resources. Although the price 

difference between some devices, such as $78 

and $85, seems small, the classification reflects 

tangible technical differences, including camera 

quality, overall performance, and memory 

capacity, which affects the efficiency of the 

device in performing smart surveillance tasks 

within the proposed system. 

2- Control and Monitoring Center (CMC)  

The CMC serves as the core of the system 

for collecting and analyzing traffic data. We 

assume it comprises four servers, each playing a 

specific role in data processing. In this work, we 

will focus on Server 1 only, which is responsible 

for vehicle detection, recognition, and counting. 

The other servers will be  addressed in future 

works. Server1–  Detection and Recognition: 

The server employs advanced techniques for 

real-time  traffic monitoring, relying on the 

YOLOv8 deep learning model [43] and the 

SAHI algorithm [44] to analyze images received 

from smart RSUs. The SAHI algorithm was 

chosen because it efficiently slices large images, 

enhancing YOLOv8’s performance on small or 

distant objects. Comparisons with standard 

YOLOv8 show significant accuracy 

improvements, particularly in high-resolution 

surveillance contexts. Parameter choices, like 

the 640x640 slice size, balance detail, and 

computational efficiency. 

SAHI is designed to enhance object 

detection performance, particularly in large-

scale and high-resolution images. It breaks 

down images into smaller ones for detection and 

then reassembles the results. This method is 

particularly useful for the detection of small 

objects in surveillance, aerial detection, and 

agriculture, where objects may be distant and 

represented by a few pixels, making their 

detection difficult [43]. 

YOLO-based models like YOLOv8, though 

effective, face challenges with small objects. 

SAHI improves the accuracy of detecting such 

objects by slicing the image into overlapping 

sections (usually set to 640x640 pixels) [44]. 

This method preserves detail and reduces 

computational strain, making it easier to extract 

key features of the model. SAHI can be used to 

create any object recognition model without the 

need for extensive customization, allowing 

flexibility across different applications [45]. 

In our road monitoring system, the SAHI 

algorithm significantly improved YOLOv8's 

detection capabilities, especially for small and 

distant vehicles. The slicing process enhances 

detection accuracy by ensuring that detailed 

features are captured, and it minimizes false 

detections by managing overlap ratios between 

sub-images. The size of slices and the overlap 

ratio are critical in balancing accuracy and 

computational load. 

Key Features of SAHI [43] 

1. Seamless Integration: Easily integrates with 

YOLO models without major code 

adjustments.  

2. Resource Efficiency: Reduces memory use 

by slicing large images into smaller parts  

3. High Accuracy: Combines overlapping 

detection boxes for more precise results. 

Sliced inference entails segmenting high-

resolution images into smaller sections for 

autonomous processing. This approach 

decreases computational burden, sustains 

detection accuracy, and enhances scalability. It 

enables object detection across multiple 

resolutions and proves effective in resource-

constrained settings [45]. For example, our 

study employed various Android devices with 

different resolutions, yielding 63, 252, and 432 

segmented images, respectively. A 20% overlap 

among segments was implemented to guarantee 

thorough object detection, thereby boosting the 
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collective efficiency of the YOLOv8 and SAHI 

integration. The SAHI algorithm’s versatility 

allows it to be widely adaptable across different 

applications, enhancing the detection of small 

objects while maintaining computational 

efficiency. 

C. Experimental Setup 

1. Hardware and software 
This section describes the hardware and 

software components chosen for the 

experimental setup. Table 3 presents the 

hardware and software components used. 

2. Experimental locations and data collection 

This section describes the strategic locations 
chosen for data collection, offering diverse 
traffic and lighting conditions to enhance the 
comprehensiveness of the results. 

2.1 Location 1: Birth Bridge 
Cameras were installed at a height of 9.5 m, 
overlooking a four-lane street with two 
secondary streets. This location typically 
experiences low traffic, allowing for clear data 
collection and providing a wide field of view, as 
shown in Figure 4. 

  

a) b) 

 

c) 

Figure 4.  First location (a) How to install Android- based devices (b) Real photography shooting location (c) 

Photography location on the map. 
 

Table 3: Hardware and software components used 

Details Item Category 

Lenovo with an Intel Core i5 processor (11th generation) and 8GB of RAM. Laptop 
Hardware 

Three cameras based on the Android system (high-cost, medium-cost, low-cost). Cameras 

Windows 11 Pro. Operating System 
Software 

YOLOv8 and SAHI in Visual Studio Code AI Framework 

2.2 Location 2: Pedestrian Bridge 

Cameras were mounted at a height of 6.95 m on 

this bridge, which spans a busy four-lane street 

connecting Birth Bridge and Shorja Bridge. This 

location includes two sub-sites: 

• Site 2.1: Cameras directed towards Shorja 

Bridge for daytime photography during 

heavy traffic. 

• Site 2.2: Cameras facing Birth Bridge for 

night-time photography, utilizing available 

lighting, as illustrated in Figure 5. 

These locations were strategically selected 

to capture diverse data under varying traffic and 

lighting conditions. A total of 270 images were 

captured at both locations, managed by two 

individuals, with each device collecting 30 

Birth Bridge 
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images per minute. Figure 6 illustrates the 

experimental setup. Table 4 summarizes the 

details of image capture across the three 

locations, including the number of images, 

object types, and specifications of the devices 

used. 

 
 

a) b) 

 

c) 

Figure 5.  Second location (a) How to install Android- based devices (b) Real photography shooting location (c) 

Photography location on the map 

 

Figure 6. Experimental setup. 

Table 4: Detailed overview of image acquisition across various locations 

Number of 

Slices 

(640x640) 

Original 

Image Size 

(pixels) 

Camera 

Resolution 

(MP) 

Object Types 
Total Images 

per Location 

Images per Device 

(images/min) 
Location 

63 4608 x 3456 16 
Buses, 

Trucks, Cars 
90 30 Location 1 

252 9284 x 6936 64 
Buses, 

Trucks, Cars 
90 30 Location 2.1 

432 12000 x 9000 108 
Buses, 

Trucks, Cars 
90 30 Location 2.2 
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The experiment in Kirkuk on 23/4/2024 

tested the model under clear skies (21°C–34°C) 

across daylight, evening, and night to evaluate 

performance in varying lighting. Clear weather 

ensured visibility; while future experiments may 

explore performance under varying weather 

conditions such as rain or fog. 

4. Methodology  

This section outlines the methodology used 

in the experiment, focusing on distance 

measurement, detection rate calculations, and 

image processing techniques, while 

incorporating clearer explanations of formulas 

and technical terms. 

Distance Measurement: Distance 

measurements were taken using basic tools and 

fixed reference points, such as the distance 

between lighting poles. For example, at Site 1, 

the distance from a specific reference point 

(Pillar No. 4) was approximately 150 meters. 

Similar distance measurements were applied at 

other locations to maintain consistency, as 

illustrated in Figure 7. 

   

a) b) c) 

Figure 7.  Locations and distance limits. (a) first location (b) second location 2.1 (c) second location 2.2 

Detection Rate (DR) Calculation: The 

Detection Rate (DR) was calculated to assess 

the accuracy of vehicle detection within specific 

distance ranges. DR is determined by dividing 

the number of detected vehicles by the total 

number of vehicles (both detected and 

undetected) within the range of interest. For 

example, within a 200-meter range, DR is 

calculated as: 

DR =
Number of detected vehicles

Total number of vehicles (detected +  undetected)
           (1) 

where number of detected vehicles refers to the 

vehicles correctly identified by the system, 

Total number of vehicles includes all vehicles in 

the range, both detected and undetected. 

The accuracy of the proposed system was 

further evaluated by comparing the actual 

number of vehicles present in an image 

(manually counted) with the number of vehicles 

detected by the YOLOv8 model combined with 

the SAHI algorithm. The following steps were 

undertaken for each device and distance: 

1. The processed output images, generated by 

the YOLOv8 and SAHI model running on 

Visual Studio, were manually reviewed. 

2. The total number of vehicles present in each 

image was manually counted and recorded 

as the ground truth. 

3. The number of vehicles detected by the 

model was also recorded. 

4. The detection accuracy for each image was 

calculated using equation (1). 

5. These steps were repeated for all images 

captured by each device at different 

distances. 

6. Results were tabulated in an Excel sheet, and 

the average accuracy was computed for each 

device and distance. 

This approach ensured consistent and fair 

evaluation across all devices and scenarios. The 

results were used to determine the performance 

trends and capabilities of the system.  

The experiment involved processing sample 

images from three Android-based devices (low-

cost, medium-cost, high-cost) across different 

settings and models. The YOLOv8 model used 

in this study is a pre-trained standard model 
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provided by Ultralytics, trained on the COCO 

data set. To adapt the model for this application, 

it was filtered to exclusively detect vehicles, 

excluding other object categories to focus on 

traffic-related analysis. Initially, images from 

each device were analyzed using the YOLOv8 

large-sized model to establish baseline 

performance. The purpose of this step is to 

compare the performance of YOLOv8 when 

used alone versus its performance when 

combined with the SAHI algorithm. The same 

image was then analyzed using the YOLOv8 

small-sized model combined with the SAHI 

algorithm. In this process, masks were used to 

overcome many challenges, including natural 

obstacles (e.g., trees), reducing the impact of 

irregular vehicles that could affect detection 

accuracy, mitigating issues caused by vehicle 

headlights, and ensuring detection focused on a 

single side of the road with multiple lanes. This 

reduced the target distance and improved the 

detection accuracy at the specified location. 

Secondly, for location-based analysis, 

images from each device were taken at two 

distinct sites to evaluate the detection range of 

each device under varying conditions and 

locations. At the first location, 30 daytime 

images were captured and processed. At the 

second location, data was collected from two 

sub-sites: Site 2.1 with 30 daytime images and 

Site 2.2 with 30 night-time images. Each set of 

images was processed using the YOLOv8 small-

sized model combined with the SAHI algorithm. 

It is worth noting that Table 4 provides detailed 

information about the images used in this 

analysis. The SAHI settings included a slice 

height of 640 pixels, a slice width of 640 pixels, 

an overlap height ratio of 0.2, and an overlap 

width ratio of 0.2, with masks applied to 

enhance detection accuracy by focusing on 

relevant areas of the images. 

The purpose of the initial setup was to 

compare the performance between YOLOv8 

alone and YOLOv8 combined with the SAHI 

algorithm, highlighting the effectiveness of 

SAHI in enhancing detection accuracy, 

especially for small or distant objects. The 

purpose of the second setup was to determine 

the detection range and performance of each 

device at different distances and under various 

environmental conditions, including different 

lighting and traffic scenarios. Figure 8 illustrates 

the application of these masks. 

 

Figure 8.  Masks used to remove unwanted image parts (a) Mask for first location, (b) Mask for second location 2.1, 

(c) Mask for second location 2.2 

5. Results   

This section presents the experimental 

results evaluating the system's performance in 

vehicle detection. The findings showcase how 

different models performed across various 

devices and conditions, providing a detailed 

analysis of detection rates and accuracy. 

Additionally, it discusses the challenges 

encountered and the advanced techniques 

employed to enhance results. 

A. Comprehensive Statistical Analysis of 

Detection Performance 

The performance data for all devices was 

collected and made in the form of tables 

containing 90 images for each device, with 30 

images for each location. Table 5 shows the 

performance data using YOLOv8 only and 

YOLOv8 with the SAHI algorithm using the 

high-cost device (Samsung Galaxy S21 Ultra) at 

the first location across three distances: 150 

meters, 300 meters, and 500 meters. The 

original data contains 30 images for each 
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setting, and represents the number of vehicles, 

the number of detected vehicles, and the 

accuracy percentage for each image. Then, a 

statistical analysis was conducted to summarize 

the performance using criteria such as mean 

accuracy, median accuracy, and standard 

deviation. After analyzing the original data in 

the table x, the statistical indicators were 

extracted for each distance using YOLOv8 only 

and YOLOv8 with SAHI. Table 6 shows these 

results. The results showed that the performance 

of YOLOv8 alone was variable, especially at 

long distances (500 m), where the average 

accuracy was only 19%, with a high standard 

deviation of 14.8%. In contrast, the combination 

of SAHI with YOLOv8 significantly improved 

the accuracy, where the average accuracy at 500 

m increased to 8.5%, and the standard deviation 

decreased to 9.8%. Based on these indicators, 

the same approach was used to analyze the 

performance of other devices at different 

locations, and the threshold of 85% was adopted 

as the criterion for determining the ideal 

performance at long distances. 
Table 5: Performance analysis of the S21 at the first site at distances of 150 m, 300 m and 500 m using YOLOv8 only 

and YOLOv8 with SAHI 

 

B. Detection accuracy analysis for all 

scenarios 

In this section, the detection accuracy is 

analyzed across all scenarios, comparing the 

results between using the YOLOv8 and SAHI 

algorithms, as well as the role of masks in 

improving accuracy under different conditions. 

1. Scenario (1)  

In this scenario, several challenges are 

addressed regarding object detection with large 

image sizes. The images used are of high 

resolution (at least 3456 x 4608 pixels), 

providing detailed visuals that support accurate 

detection under typical circumstances. 

However, since YOLOv8 was trained on images 

of a smaller size (640 x 640 pixels), resizing 

these large images results in some loss of detail. 

This loss particularly affects the detection of 

small or distant objects, leading to decreased 

detection accuracy. 

For detection range and accuracy, the results 

vary between daytime and night-time 

First location for device S21 using YOLOV8 only 

Images  
150m 300m 500m 

number of 

vehicles 

number of 

detected 

vehicles 

Accuracy 
number of 

vehicles 

number of 

detected 

vehicles 

Accuracy 
number of 

vehicles 

number of 

detected 

vehicles 

Accuracy 

Image 1 5 5 100% 7 5 71% 10 5 50% 

Image 2 5 5 100% 7 5 71% 10 5 50% 

Image 3 3 3 100% 8 3 38% 11 3 27% 

Image 4 2 2 100% 4 2 50% 10 2 20% 

Image 5 3 2 67% 5 2 40% 10 2 20% 

Image 6 4 3 75% 4 3 75% 9 3 33% 

Image 7 4 3 75% 4 3 75% 9 3 33% 

Image 8 4 2 50% 5 2 40% 10 2 20% 

Image 9 4 2 50% 5 2 40% 10 2 20% 

Image 10 2 1 50% 3 1 33% 8 1 13% 

Image 11 4 1 25% 4 1 25% 9 1 11% 

Image 12 5 2 40% 5 2 40% 9 2 22% 

Image 13 4 1 25% 5 1 20% 10 1 10% 

Image 14 1 1 100% 4 1 25% 9 1 11% 

Image 15 1 1 100% 4 1 25% 8 1 13% 

Image 16 1 1 100% 3 1 33% 10 1 10% 

Image 17 2 1 50% 5 1 20% 12 1 8% 

Image 18 2 1 50% 4 1 25% 12 1 8% 

Image 19 2 1 50% 3 1 33% 8 1 13% 

Image 20 3 2 67% 4 2 50% 9 2 22% 

Image 21 4 3 75% 4 3 75% 10 3 30% 

Image 22 4 1 25% 4 1 25% 7 1 14% 

Image 23 4 3 75% 6 3 50% 11 3 27% 

Image 24 4 2 50% 6 2 33% 11 2 18% 

Image 25 2 2 100% 3 2 67% 7 2 29% 

Image 26 2 0 0% 5 0 0% 10 0 0% 

Image 27 2 1 50% 5 1 20% 10 1 10% 

Image 28 1 1 100% 5 1 20% 10 1 10% 

Image 29 1 0 0% 2 0 0% 8 0 0% 

Image 30 1 1 100% 2 1 50% 8 1 13% 
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photography. During the day, the detection 

range reaches up to 150 meters with an accuracy 

rate of approximately 90%. Beyond this 

distance, accuracy noticeably declines. At night, 

the detection range is slightly reduced to 140 

meters, and accuracy drops below 90% at this 

distance, as shown in Figure 9. 

During the experiment, several challenges 

emerged progressively, each requiring tailored 

solutions to ensure accurate detection. The 

initial challenges included natural obstacles, 

such as trees separating road lanes, irregularly 

parked vehicles, and the glare from vehicle 

headlights at night. Figure 10 illustrates issues 

resolved using image masks. These factors 

interfered with the model's ability to distinguish 

objects accurately. To address  these issues, the 

detection process was limited to a single side of 

the road rather than both sides, regardless of the 

number of lanes on that side. Masks were 

applied to constrain the detection area within the 

image, focusing only on the relevant sections of 

the road. This targeted approach reduced the 

impact of obstacles and minimized interference, 

leading to significant improvements in 

detection. several challenges were observed 

regarding object detection with large image 

sizes. The images used in the experiment were 

of high resolution (at least 3456 × 4608 pixels), 

providing detailed visuals that support accurate 

detection under typical circumstances. 

However, because YOLOv8 was trained on 

small images (640 × 640 pixels), resizing these 

large images resulted in a loss of detail. This 

reduction primarily affected the detection of 

distant objects, reducing detection accuracy. 

To overcome this issue, the SAHI algorithm 

was applied in the second scenario. SAHI 

divides high-resolution images into smaller 

connected segments (slices) that best match the 

model’s training dataset. This method preserved 

detail, and significantly improved the detection 

quality, especially for distant particles. The use 

of SAHI has proven helpful in extending the 

detection range and addressing the limitations 

imposed by image resolution. Table 7 shows 

that the detection results when using the 

YOLOv8 model alone compared to using the 

YOLOv8 model combined with the SAHI 

algorithm. The table highlights the 

improvement in detection accuracy, particularly 

for small or distant objects, when the SAHI 

algorithm is employed. This enhancement is 

attributed to SAHI’s ability to slice high-

resolution images into smaller sections, 

preserving critical details and overcoming 

challenges such as object overlap and image 

resizing effects. The results demonstrate the 

effectiveness of combining YOLOv8 with 

SAHI for more accurate and reliable detection 

under diverse conditions.  

2. Scenario (2)  

As previously mentioned, masks were 

applied to address challenges such as 

overlapping vehicles and natural obstacles. 

Additionally, the SAHI algorithm was 

employed to handle the large size of images. In 

this scenario, the SAHI algorithm was utilized 

to divide images into 640 x 640 slices. 

The number of slices depends on the 

resolution of the image used. For low-cost 

devices, 63 slices were obtained for a resolution 

of 4608 x 3456. For medium-cost devices, the 

image was divided into 252 slices for a 

resolution of 9284 x 6936. Finally, for high-cost 

devices, 432 slices were created for a resolution 

of 12000 x 9000. 

Regarding the results of detection using the 

sliced images, the daytime detection in Figure 

11 indicates that at the first location, the 

detection accuracy reached a range of 500 

meters, leading to an improved detection rate 

consistent with the initial research plan. 

However, at the second location, the detection 

range was limited to 300 meters due to 

geographical constraints. For night-time 

detection, in Figure 11, the detection range was 

again limited to 300 meters due to reduced 

visibility at night. 

Lastly, the effectiveness of masks 

demonstrated their ability to effectively address 

issues related to overlapping vehicles and 

natural obstacles, resulting in improved 

detection accuracy. 
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Figure 9.  YOLOv8 test results in locations (a) first location, (b) second location 2.1, (c) second location 2.2 

 
Figure 10. Issues resolved using image masks (a) overlapping vehicles parked on the side of the road, (b) natural 

obstacles, such as trees, (c) cars headlights 

Table 7: Device performance rates under various traffic conditions and distances, comparing results using YOLOv8 

alone and YOLOv8 combined with the SAHI algorithm 

Detection rate using only YOLOV8 Detection rate using YOLOV8 and SAHI algorithm 

Device 

type 

Condition 

Day/Night 
100 m 150 m 200 m 300 m 500 m 

Device 

type 

Condition 

Day/Night 
100 m 150 m 200 m 300 m 500 m 

Low 

cost 

Low traffic 

(Day) 
N/A 97% N/A 90% 60% 

Low 

cost 

Low traffic 

(Day) 
N/A 97% N/A 90% 

60% 

 

Moderate 

traffic 

(Night) 

72% N/A 80% 56% N/A  

Moderate 

traffic 

(Night) 

72% N/A 80% 56% 
N/A 

 

High 

traffic 

(Day) 

95% N/A 86% 77% N/A  
High traffic 

(Day) 
95% N/A 86% 77% 

N/A 

Medium  

cost 

Low traffic 

(Day) 
N/A 100% N/A 92.8% 83% 

Medium  

cost 

Low traffic 

(Day) 
N/A 100% N/A 92.8% 

83% 

 

Moderate 

traffic 

(Night) 

98% N/A 87% 45% N/A  

Moderate 

traffic 

(Night) 

98% N/A 87% 45% 
N/A 

 

High 

traffic 

(Day) 

95% N/A 85% 56% N/A  
High traffic 

(Day) 
95% N/A 85% 56% 

N/A 
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high 

cost 

Low traffic 

(Day) 
N/A 100% N/A 95% 85% 

high 

cost 

Low traffic 

(Day) 
N/A 100% N/A 95% 

85% 

 

Moderate 

traffic 

(Night) 

98.42% N/A 96% 90% N/A  

Moderate 

traffic 

(Night) 

98.42% N/A 96% 90% 
N/A 

 

High 

traffic 

(Day) 

97% N/A 98% 95% N/A  
High traffic 

(Day) 
97% N/A 98% 95% 

N/A 

 

C. Detection accuracy analysis (by device type) 

In this section, detection accuracy is 

analyzed by device type, with emphasis on the 

effect of device quality on detection accuracy 

and the extent to which environmental 

conditions and processing techniques used 

influence it. 

 

1. Detection accuracy with low-cost devices 

After applying the YOLOv8 model, the 

SAHI algorithm, and the masking technique to 

images from low-cost devices, the results 

demonstrated varying levels of detection 

accuracy across different scenarios. 

 
Figure 11. YOLOv8 and SAHI algorithm with mask results in locations (a) first location, (b) second location 2.1, (c) 

second location 2.2 

• First location: During the day in non-

congested traffic, detection accuracy was 

high, reaching 97% at 150 meters and 90% 

at 300 meters. However, accuracy dropped 

to 60% at 500 meters due to limitations in 

the camera sensor quality of low-cost 

devices. 

• Second location 2.1: In a crowded traffic 

scenario during the day, detection accuracy 

was also high, reaching 95% at 100 meters 

and 86% at 200 meters. At 300 meters, 

accuracy dropped to 77%, primarily due to 

sensor quality issues and vehicle occlusion.  

• Second location 2.2 (Night Photography) At 

night, in an average traffic scenario, 

detection accuracy was lower, with 72% at 

100 meters and 56% at 300 meters. This 

reduction in accuracy was attributed to poor 

image quality from weak camera sensors 

and the effects of vehicle headlights. Figure 

12 illustrates the undetected patterns for all 

locations and distances. Undetected patterns 

typically arise when vehicles are obscured 

by other vehicles or when the distance 

between the vehicles and the camera 

exceeds the effective detection range. 
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Figure 12.  Examples of cases where accuracy was reduced for the low-cost Android-based device 

2. Detection accuracy with medium-cost devices 

After applying the YOLOv8 model, the 

SAHI algorithm, and the masking technique to 

images from medium-cost devices, the results 

demonstrated varying levels of detection 

accuracy across different scenarios. 

• First location: Daytime detection accuracy 

in non-congested traffic was nearly perfect, 

reaching 100% at 150 meters and remaining 

high at 300 meters (92.8%). However, the 

accuracy dropped to 83% at 500 meters due 

to limitations of the medium-quality camera 

sensor.  

• Second location 2.1: In crowded traffic 

conditions during the daytime, detection 

accuracy started at 95% at 100 meters and 

decreased progressively with distance, 

reaching 86% at 200 meters and 77% at 300 

meters. The decrease in accuracy was due to 

vehicle occlusion and sensor limitations.  

• Second location 2.2 (Night Photography): 

Under average traffic conditions at night, 

detection accuracy was high, achieving 98% 

at 100 meters. However, the accuracy 

dropped to 87% at 200 meters and 45% at 

300 meters, mainly due to night-time 

conditions and sensor quality limitations. 

Figure. 13 illustrates the undetected models, 

Undetected patterns typically arise when 

vehicles are obscured by other vehicles or 

when the distance between the vehicles and 

the camera exceeds the effective detection 

range. 

 

 
Figure 13.  Examples of cases where accuracy was reduced for the medium-cost Android-based device 
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3. Detection Accuracy with High-Cost Devices 

After applying the YOLOv8 model, the 

SAHI algorithm, and the masking technique to 

images from high-cost devices, the results 

demonstrated varying levels of detection 

accuracy across different scenarios. 

• First location: During the daytime in non-

congested traffic, detection accuracy was 

excellent, achieving 100% at 150 meters, 

95% at 300 meters, and 85% at 500 meters. 

The slight drop in accuracy at 500 meters 

was attributed to the need for even higher 

resolution to distinguish distant objects.  

• Second location 2.1: In crowded traffic, 

detection accuracy remained high, with 97% 

at 100 meters, 98% at 200 meters, and 95% 

at 300 meters. The primary challenge 

affecting detection accuracy was occlusion, 

with examples such as a vehicle pulled by a 

motorcycle, commonly referred to as a 

"Stota." 

• Second Location 2.2 (Night Photography): 

Under average traffic conditions at night, 

high-cost devices performed well despite 

challenging conditions. Detection accuracy 

was 98.42% at 100 meters, 96% at 200 

meters, and 90% at 300 meters. The slight 

drop in accuracy was attributed to night-time 

conditions, in addition to previously 

mentioned challenges such as reduced 

visibility and sensor limitations. Figure. 14 

illustrates the undetected models, 

Undetected patterns typically arise when 

vehicles are obscured by other vehicles or 

when the distance between the vehicles and 

the camera exceeds the effective detection 

range. 

 

 
Figure 14.  Examples of cases where accuracy was reduced for the high-cost Android-based device 

The experiments reveal performance 

variability across devices and environmental 

conditions. Key findings include: 

• Detection range and accuracy: The 

YOLOv8 model showed improved 

performance with high-resolution images 

due to the SAHI algorithm, which enabled 

accurate object detection over greater 

distances. The use of the SAHI algorithm 

to split images into smaller segments 

effectively preserved image detail and 

improved detection accuracy across 

different devices. Additionally, the 

masking technique proved beneficial in 

mitigating issues caused by overlapping 

vehicles and natural obstacles, enhancing 

detection rates. 

• Impact of device quality: Higher-cost 

devices generally provide better detection 

accuracy due to their superior image 

resolution and sensor quality. High-cost 

devices consistently outperformed 

medium- and low-cost devices across 

various scenarios, with significant 

improvements in detection accuracy 

during both daytime and night-time. 

In addition, using a small dataset of only 

270 images is limited in representing real-world 

scenarios. While device quality significantly 

impacts detection performance, another critical 
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factor influencing generalization ability is the 

dataset size. This limited data size may lead to 

potential overfitting and reduced generalization 

ability of the model across diverse 

environments. To overcome this challenge, it is 

recommended to expand the dataset to include 

more diverse scenarios, including different 

lighting conditions, traffic congestion, and 

distances.  

• Challenges: Detection accuracy was 

affected by factors such as image quality, 

lighting conditions, overlapping vehicles, 

natural obstacles, and vehicle headlights. 

6. Discussion of results    

The maximum detectable distance for each 

Android-based device varies notably depending 

on device quality and lighting conditions (day or 

night). The system performance was limited by 

the capabilities of the devices used, with the 

highest camera resolution used being 108 MP. 

The results showed that as the camera resolution 

increased, the detection range increased 

significantly, with devices with high-resolution 

cameras achieving detection distances of up to 

500 meters with an accuracy of 85%. Therefore, 

to achieve longer detection distances in the 

future, it is recommended to use devices with 

higher-resolution cameras to extend the 

performance range and increase the detection 

accuracy. 

For high-quality Android-based devices, the 

maximum detectable distance reaches 500 

meters with a detection accuracy of 85%. 

Reducing the distance to 300 meters boosts the 

accuracy to 90%. This device maintains strong 

performance in both daytime and night-time 

photography. 

Medium-cost devices were capped at a 

maximum detection range of 200 meters due to 

the significant drop in accuracy observed under 

challenging conditions. While detection 

accuracy was acceptable during the day with 

non-congested traffic (92.8% at 300 meters), it 

dropped to an unacceptable 55% in high-

congestion and night-time scenarios. This 

limitation makes 200 meters a practical 

compromise for reliable performance, ensuring 

accuracy remains within an acceptable threshold 

across different conditions. 

Low-cost devices were limited to a 

maximum detection range of 100 meters due to 

their sensitivity to low-light conditions. While 

daytime detection accuracy was high at 95%, 

night-time performance dropped to 72%, even at 

closer ranges. This trade-off reflects the 

decision to prioritize daytime usability over 

achieving high accuracy at night, given the 

lower capabilities of the device. 

These findings suggest that higher-quality 

devices are more suitable for applications 

requiring extended detection ranges and greater 

accuracy, particularly in varied lighting 

scenarios. Selecting the appropriate device type 

in real-world implementations depends on the 

specific needs for detection distance and 

accuracy, with particular attention to differences 

in day and night performance. Figure 15 

presents detailed results for these observations. 

7. Limitations 

While the proposed system demonstrated 

promising performance, several limitations 

were identified that warrant further attention: 

1. Device Constraints: The system's 

performance was limited by the hardware 

capabilities, particularly the camera 

resolution and sensor quality, which directly 

influenced detection accuracy and range. 

2. Dataset Size: The limited dataset of 270 

images reduced the system's ability to 

generalize across diverse real-world 

conditions, potentially affecting its 

robustness in untested scenarios. 

3. Environmental Factors: Issues such as 

overlapping vehicles, natural obstacles, and 

poor lighting conditions (e.g., night-time 

scenarios) posed challenges for consistent 

detection accuracy. While these challenges 

were addressed to a significant extent 

through the use of masking techniques, they 

remain influential in certain complex 

scenarios and highlight areas for further 

optimization. 

These limitations underscore the need for 

future research and development efforts to 

address these challenges, particularly by 

improving hardware capabilities, expanding the 
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dataset, and optimizing the system for diverse 

and challenging conditions. 

7. Conclusion   

This research developed a cost-effective, 

Android-based traffic monitoring system using 

smart RSUs that leverage YOLOv8 models and 

the SAHI algorithm to enhance detection 

accuracy under various conditions. Field 

experiments demonstrated that high-cost 

devices deliver superior performance in terms of 

detection range and accuracy, making them 

ideal for applications that demand high 

precision and extended coverage. Meanwhile, 

low- and medium-cost devices provide a 

budget-friendly alternative for less intensive 

monitoring needs, increasing the system's 

adaptability to diverse urban environments.   

This flexible design contributes significantly to 

improving traffic management in smart cities, 

reducing the environmental and economic 

impacts of traffic congestion, and providing 

offering real-time information to users. Future 

work could focus on optimizing performance in 

different weather conditions and expanding 

features, such as pedestrian monitoring, speed 

measurement, and plate recognition, to further 

enhance the system's utility. Ethical concerns 

and privacy protections are important when 

using a camera-based system for road 

surveillance. The proposed system has 

demonstrated the ability to improve traffic 

management without compromising individual 

privacy and focuses only on vehicle detection 

and traffic data analysis to ensure full privacy 

made anonymous. This approach is in line with 

international data protection standards and 

emphasizes the ethical responsibility of the 

system design, which is important when using 

camera-based systems for road surveillance. 

The proposed system enhances traffic 

management without compromising individual 

privacy by focusing solely on vehicle detection 

and traffic data analysis while ensuring that all 

personal information remains hidden. 

 

 
 Figure 15.  Maximum coverage for the three devices 
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