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Metaheuristic algorithms have gained significant acceptance in large areas of 

optimization, giving unique and novel solutions to complicated problems across various 

areas. This research dives into the wide classification of state-of-the-art real-world 

applications that depend on metaheuristic algorithms, acknowledging their prevalence 

and the diversity of real-world applications where their performances are evaluated. The 

major goal is to evaluate forty-eight metaheuristic algorithms from 2020 to 2024 based 

on the results presented in their original research articles, emphasizing their 

effectiveness in tackling six prevalent real-world applications. In addition, the study 

classifies the algorithms and compares them to determine which ones are most effective 

for the particular applications. The results point out the necessity to solve the actual 

problems using opting for a metaheuristic algorithm. Nevertheless, it becomes very 

obvious that no algorithm works well in all the cases pointed out, as a demand for an 

informed selection based on the task complexity. This research contributes to the 

ongoing development and application of metaheuristic algorithms in diverse practical 

settings by providing valuable insights into the dynamic landscape of metaheuristics. 
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1. Introduction 

In the world of optimization strategies, 

metaheuristic algorithms are adaptive tools 

borrowed from many different fields, providing 

a new way to solve the complex problems in 

diverse industries [1]. Worldwide, scientists are 

always trying to improve optimization methods. 

Several algorithms, such as bio-inspired/nature-

inspired, population-based, and swarm-based, 

have become prevalent for their improved 

performance and ease [2-4]. These methods 

have enabled them to effectively manage the 

various challenges in different spheres. 

Effective methodologies of optimization are 

extremely important in the complex world with 

many growing knowledge domains. 

Metaheuristic algorithms present a fascinating 
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approach to the overcoming complex issues in 

engineering, biology, and many other fields   [5-

7]. Knowing these algorithms and their types is 

very critical for researchers, engineers, and 

practitioners looking for effective approaches to 

tackle the sophisticated optimization problems. 

Optimization plays a crucial role in solving 

complex, constrained real-world problems, and 

metaheuristic algorithms have emerged as 

robust tools in this context due to their 

adaptability and efficiency [8,9]. These 

algorithms are increasingly recognized for their 

ability to address multidimensional engineering 

challenges, especially in electrical and civil 

domains, where standard solutions fall short 

[10]. Their design, often inspired by natural 

processes such as evolution and swarm 
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behavior, equips them with the flexibility to be 

applied across diverse fields, including 

healthcare, economics, and computer science 

[11-13]. As high-level frameworks, 

metaheuristics offer generalizable approaches 

suitable for complex tasks [14] in planning, 

scheduling, and network systems [15]. Notably, 

specific techniques like the Teaching-Learning-

Based Optimization (TLBO) algorithm have 

shown promising results in handling nonlinear, 

multidimensional problems and have been 

refined for broader applications [16]. In the 

domain of cybersecurity, advanced 

metaheuristics such as the Lion Optimization 

Algorithm and Grey Wolf Optimizer have 

enabled the development of more accurate and 

adaptive intrusion detection systems [17]. 

In recent years, there have been great 

discoveries and the utilization of metaheuristic 

algorithms. Bio-inspired/nature-inspired 

algorithms are inspired by the nature and can 

adapt to the changing environments [18]. 

Human behavior-based algorithms use the 

information about human activity to improve the 

decision making [19]. Swarm algorithms, which 

are based on the collective behaviors in nature 

and utilize the cooperation of multiple agents to 

achieve the optimal solutions [20]. These 

metaheuristics are very essential in addressing a 

wide range of optimization problems within the 

different domains for their flexibility and also 

effectiveness. 

Previous reviews have broadly examined 

metaheuristic algorithms, focusing on their 

classification, theoretical foundations, and 

general applications. Studies such as [21-23] 

provide high-level overviews—detailing 

algorithmic types, inspirations, open challenges, 

and broad application domains—while offering 

insights into commonly used metaheuristics like 

PSO, GA, and ACO. These works aim to guide 

both new and experienced researchers in 

understanding the scope and versatility of 

metaheuristics. Some reviews narrow in on 

specific algorithms, such as [24], which focuses 

on the Bat Algorithm, and [25], which focuses 

on the Slime Mould Algorithm, offering in-

depth analyses of their variants, applications, 

and potential research directions. In contrast, the 

uniqueness of the current review lies in its 

practical benchmarking of 48 recent 

metaheuristic algorithms (2020–2024) 

specifically against six real-world engineering 

problems. It not only categorizes these 

algorithms by their conceptual basis but also 

assesses their effectiveness in constrained, real-

world tasks—offering performance-based 

insights and concrete guidance on algorithm 

selection, a dimension largely missing from 

prior general or algorithm-specific reviews. 

Despite significant advancements in the 

research and application of metaheuristic 

algorithms, there is a substantial void in an all-

inclusive classification and systematic 

assessment of these algorithms, especially for 

engineering optimization. The literature lacks a 

comprehensive analysis that describes such 

algorithms and evaluates their efficacy in 

various engineering problems. Filling this gap is 

extremely important for the progress of the field, 

as it allows the researchers to choose algorithms 

based on algorithmic properties tailored to their 

optimization problems. 

This study delves into bio-inspired/nature-

inspired, chemistry-based, game-based, human 

behavior-based, hybrid, math-based, physics-

based, population-based, socio-inspired, and 

swarm-based metaheuristic algorithms. In order 

to cover a knowledge gap and contribute to the 

progress of problem-solving techniques, this 

paper deals with the specifics of these 

algorithms. It presents their practical application 

in engineering optimization. As a result, the 

following are the specific research objectives 

aimed at filling the identified knowledge gap: 

Comprehensive Classification: Develop a 

detailed classification of metaheuristic 

algorithms, categorizing them into distinct 

groups based on their inspiration sources and 

underlying principles. Thus, A clear gap 

identified in the existing literature is the absence 

of a comprehensive survey that compares the 

results of metaheuristic algorithms in real-world 

applications. This lack of comparative analysis 

makes it difficult for developers to identify the 

generated algorithms for specific real-world 

problems, particularly those based on nature-

inspired and bioinformatics-driven approaches. 

By addressing this gap, the current survey 

provides valuable insights that aid in the 
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effective selection of metaheuristic methods for 

practical applications. 

These benchmark problems are widely 

utilized due to their highly non-linear, 

constrained nature and strong relevance to real-

world engineering applications. Their 

complexity makes them particularly suitable for 

evaluating the robustness, convergence 

behavior, and optimization accuracy of 

metaheuristic algorithms. Furthermore, while 

the No-Free-Lunch (NFL) theorem asserts that 

no single algorithm universally outperforms all 

others across every problem domain, several 

algorithms have demonstrated consistently 

strong performance within specific engineering 

contexts. This systematic review highlights that 

the effectiveness of each algorithm is problem-

dependent, and its success is closely tied to the 

characteristics of the target application. By 

analyzing performance across standard 

benchmark problems, this review provides 

valuable insights into which algorithms are most 

capable of delivering optimal solutions 

efficiently in practical engineering and real-life 

scenarios. 

Performance Assessment: Assess the 

effectiveness of these algorithms for a variety of 

constrained benchmark optimization problems 

in mechanical engineering, including the 

pressure vessel design, welded beam design, 

tension/compression spring design, speed 

reducer design, gear train design, and also three-

bar truss. 

The key contributions of this study are as 

follows: 

• Provides a comprehensive classification of 

48 recent metaheuristic algorithms based on 

their conceptual inspiration. 

• Conducts a systematic performance 

assessment of these algorithms across six 

classical engineering optimization 

problems. 

• Highlights the strengths and limitations of 

each algorithm in real-world applications. 

• Offers practical guidance for selecting 

suitable metaheuristic algorithms tailored to 

specific optimization challenges. 

• Fills a critical knowledge gap by 

benchmarking modern metaheuristics in 

constrained engineering design tasks. 

The organization of the paper is outlined in 

the following manner: In Section 2, the 

methodology of the literature search is 

described, which also represents the research 

approach. Section 3 is devoted to the 

metaheuristic algorithms classification. Section 

4 outlines the application of metaheuristic 

algorithms in engineering optimization and 

discusses the assessment of their performance. 

Section 5 engages in discussion, providing 

insights and analysis. Section 6 is devoted to the 

discussion, while the final section, Section 7, 

encompasses concluding remarks and outlines 

future directions. 

2. Literature search methodology  

Conforming to the PRISMA [26,27] 

guidelines, this systematic literature review 

investigates pertinent papers from credible 

sources, depicted in Figure 1. Employing a 

systematic literature review approach, the study 

concentrates specifically on evaluating the 

efficacy of algorithms for various constrained 

benchmark optimization problems within the 

realm of mechanical engineering. Following the 

evaluation phase, the primary studies singled 

out undergo thorough quantitative analysis to 

affirm the strength and relevance of the findings. 

 

Figure 1. Systematic literature review paradigm. 
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2.1. Formulation of research questions 

This review seeks to identify the research 

questions related to investigating the efficacy of 

several metaheuristic algorithms in resolving 

engineering issues. The set of questions below 

seeks to elucidate the role of metaheuristic 

algorithms in solving engineering problems: 
• What are the dominant types of 

metaheuristic algorithms? 

• What type of metaheuristic algorithm has 

resulted in the best performance in solving 

the various engineering optimization 

problems? 

• Which classical engineering optimization 

problems are used the most frequently to 

assess the performance of the metaheuristic 

algorithms? 

2.2. Search method and selection criteria 

The literature review was composed of 

searching for English-language peer-reviewed 

research articles from three databases (PubMed, 

ScienceDirect, and IEEE). Additionally, the 

University of Toronto Libraries' OneSearch 

[28]. The search included records published in 

the year 2020-2024 and was conducted on April 

9, 2025. The search terms used were: ("meta-

heuristic" OR "metaheuristic" OR 

"Algorithm*") AND ("pressure vessel" OR 

"three‑bar truss" OR "welded beam" OR 

"tension/compression spring" OR "gear train" 

OR "speed reducer design"). In total, 48 unique 

articles were incorporated in this review. To 

incorporate and embed relevant papers 

according to the research questions determined 

in the “Formulation of Research Questions” 

segment, the inclusion-exclusion criteria were 

created. The following criteria were applied to 

choose the most pertinent papers for this review: 

Inclusion Criteria: 

1. English-language peer-reviewed 
articles. 

2. Publications spanning the years 2020 to 
2024. 

3. Pertinence to the application of 
metaheuristic algorithms on the six 

previously mentioned engineering 
optimization problems. 

Exclusion Criteria: 

1. Studies unavailable in the English 
language. 

2. Studies devoid of engagement with 
metaheuristic algorithms. 

3. Studies unrelated to the previously 
mentioned engineering optimization 
problems. 

4. Studies presenting results solely through 
charts or graphs. 

5. Studies released prior to the year 2020. 
6. Studies lacking the inclusion of 

statistical measures for assessing 
metaheuristic algorithms. 

7. Studies with inadequate topic definition. 

2.3 Quantitative analysis 

The final stage of our assessment 

methodology involved conducting 

comprehensive statistical analysis on 

quantitative data. This phase entailed collecting 

and analyzing quantitative data sourced from 

various sources such as conferences, journals, 

and book chapters. Subsequently, we conducted 

rigorous statistical analyses to explore our 

research topics in depth and identify emerging 

trends. 

Figure 2 provides a detailed overview of our 

screening and assessment procedure for the 

statistical analysis of literature. The diagram 

illustrates the selection process involving two 

databases and a search engine for the review. 

Initially, out of the 783 papers identified for 

review and analysis, a significant portion was 

duplicated, leading to the removal of 89 entries 

before screening commenced. Publications were 

then screened based on predetermined inclusion 

and exclusion criteria, resulting in the 

assessment of 46 papers meeting the specified 

criteria. Additionally, two additional papers 

were sourced from alternative channels, 

bringing the total to 48 papers for analysis. 
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Figure 2. Systematic review screening process flowchart. 

3. Metaheuristic algorithms classification 

Metaheuristic algorithms comprise various 

optimization strategies derived from various 

areas, as shown in Figure 3. This innovative 

family of approaches includes bio-

inspired/nature-inspired, chemistry-based, 

game-based, human behavior-based, hybrid, 

math-based, physics-based, population-based, 

socio-inspired, and swarm-based algorithms, 

each of which offers unique solutions to 

complex problems across multiple domains. 

Table 1 presents a list of algorithm 

abbreviations along with their full names. 

 

Figure 3. Classification of metaheuristic algorithms.
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Table 1: The abbreviations mentioned in the text are listed in alphabetical order. 

Abbreviations Words 

CVSO Corona Virus Search Optimizer 

AFT Ali Baba and the Forty Thieves 

AOA Archimedes optimization algorithm 

APO Artificial Protozoa Optimizer 

BOA1 Bobcat Optimization Algorithm 

BOA2 Botox Optimization Algorithm 

CCE City Councils Evolution 

CCRAO Colonial Competitive RAO 

COA Coati Optimization Algorithm 

COASaDE 
Crayfish Optimization Algorithm Self-adaptive Differential 

Evolution 

CPO Crested Porcupine Optimizer 

CWO Carpet Weaving Optimization 

DRA Divine Religions Algorithm 

DTBO Driving Training-Based Optimization 

EDO Exponential Distribution Optimizer 

EHO Elk herd optimizer 

FDA Flow Direction Algorithm 

FOX Fox optimizer 

GCRA2 Greater cane rat algorithm 

GRO Gold Rush Optimizer 

GVOA Griffon Vultures Optimization Algorithm 

HBA Honey Badger Algorithm 

HBWO hybrid Beluga Whale Optimization 

HO Hippopotamus Optimization 

HOA Hiking Optimization Algorithm 

hPSO-TLBO 
hybrid Particle Swarm 

Optimization–Teaching–Learning-Based Optimization 

LCA Learning cooking algorithm 

LOA Lyrebird Optimization Algorithm 

MGA Material Generation Algorithm 

MOA Mother Optimization Algorithm 

MSSSA Multi-Strategy-Sparrow Search Algorithm 

NGO Northern Goshawk Optimization 

OOBO One-to-One-Based Optimizer 

OOPOA Object-Oriented Programming Optimization Algorithm 

PbA Penalty-based Algorithm 

PEOA Preschool Education Optimization Algorithm 

PO Political Optimizer 

POA Pelican Optimization Algorithm 

PSA Propagation Search Algorithm 

RBMO Red-billed blue magpie optimizer 

RPO Red Panda Optimization 

SABO Subtraction-Average-Based Optimizer 

SCO Single Candidate Optimizer 

SGO Squid Game Optimizer 

SO Snake Optimizer 

WaOA Walrus Optimization Algorithm 

WOA Wombat Optimization Algorithm 

WSO War Strategy Optimization 

WWPA Waterwheel Plant Algorithm 

Bio-inspired/nature-inspired algorithms 

harness the remarkable behaviors of diverse 

creatures to tackle complex optimization 

challenges. CVSO [29] draws inspiration from 

the movement and search strategies of the 

coronavirus within societies, exhibiting a 

balance between local and global search through 

evolutionary strategies. HBA [30] is inspired by 
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the intelligent foraging behavior of honey 

badgers. SO [31] mimics the unique mating 

behavior of snakes, where each snake (male or 

female) competes for the best partner when 

sufficient food is available and the temperature 

is low. WaOA [32] is based on the natural 

behaviors of walruses, specifically feeding, 

migrating, escaping, and fighting predators. The 

WWPA [33] models the natural hunting 

behavior of the waterwheel plant. LOA [34] 

mimics lyrebirds' escape and hiding strategies, 

showcasing high exploration and exploitation 

capabilities in problem-solving spaces. RPO 

[35] emulates red pandas' foraging and tree-

climbing behaviors, demonstrating effective 

optimization without parameter adjustment. 

COA [36] demonstrates an advantage in 

balancing the exploration and exploitation over 

multiple objective functions and real-world 

problems due to capturing coati behaviors that 

are related to attacking, hunting, and escaping. 

EHO [37] is inspired by the structured breeding 

behavior of elk, where dominance-based group 

formation and seasonal cycles guide the search 

process. GCRA [38] mimics the intelligent 

nocturnal foraging and mating behaviors of cane 

rats, using trail-following and territorial 

separation to enhance exploration and 

exploitation. HO [39] algorithm draws from the 

defensive, evasive, and movement strategies of 

hippos in aquatic environments to balance 

search dynamics. RBMO [40] models the 

cooperative hunting, chasing, and food storage 

tactics of magpies to efficiently explore and 

exploit the solution space. BOA [41] replicates 

the stalking and chasing behavior of bobcats 

during hunting to simulate adaptive exploration 

and targeted exploitation. APO [42]simulates 

the life cycle behaviors of protozoa, including 

foraging, dormancy, and reproduction, to 

dynamically navigate complex search spaces. 

WOA [43] is inspired by wombats’ food-

searching routines and evasive burrow-diving 

actions, enabling a robust exploration-

exploitation trade-off in optimization tasks. 

GVOA [44] draws inspiration from the complex 

and adaptive foraging strategies of griffon 

vultures, modeling their cooperative and 

individual search behaviors to achieve a 

balanced and efficient global optimization 

process. FOX [45] takes cue from the foraging 

technique of the foxes, whereby it focuses on 

manageable jumps to chase the prey efficiently. 

AFT [46] creatively draws from the well-known 

story, infusing Ali Baba’s search for the Forty 

Thieves with the exploration and exploitation 

processes. POA [47] implements a stochastic 

optimization process to explain the hunting 

behavior of the pelicans, which depicts an 

equilibrium between exploration and 

exploitation on different functions. CPO [48] 

utilizes the defensive characteristics of crested 

porcupines and proposes a population reduction 

cycle to improve the convergence and diversity. 

These bio-inspired/nature-inspired algorithms 

possess distinctive features that contribute to 

efficiently solving complex optimization 

problems. 

The realm of human behavior-based 

algorithms introduces innovative optimization 

approaches, drawing inspiration from diverse 

aspects of human interactions. WSO [49] 

strategically mimics military tactics, while 

DTBO [50] emulates the driving learning 

process. MOA [19] reflects the care and 

guidance of a mother in its three phases, 

emphasizing education, advice, and upbringing. 

Meanwhile, referencing preschool activities, 

PEOA [51] models the incremental evolution of 

a teacher's influence and the development of 

individual knowledge. HOA [52] draws from 

the physical and strategic aspects of hiking 

through mountainous terrains; CWO [53] 

mimics the intricate coordination between a 

weaver and a pattern reader in traditional carpet-

making; BOA [54] takes cues from the defect-

correcting nature of cosmetic Botox procedures; 

DRA [55] models socio-religious dynamics and 

leadership evolution within spiritual 

communities; and LCA [56] reflects the 

intergenerational learning process observed in 

family cooking environments—all offering 

unique strategies to balance exploration and 

exploitation while effectively solving complex 

optimization problems. These algorithms 

showcase the potential of human-centric 

metaheuristics, offering unique perspectives in 

solving optimization problems. 

Based on social organizations, the socio-

inspired algorithms restate the optimization 



Dler O. Hasan and Aso M. Aladdin / Diyala Journal of Engineering Sciences Vol (18) No 2, 2025: 1-27 

8 

 

paradigms. CCE [57] cleverly reflects the 

evolutionary processes of the city councils. 

Political processes are translated by PO [58] into 

a dual role assignment, which allows for 

navigating the optimization landscapes with 

agility. SCO [59] goes against the conventions, 

depending on a lone candidate with a double-

phased approach. The socio-inspired algorithms 

are very creative in that they give much better 

results than their counterparts on various 

benchmarks. Thus, their innovative style reveals 

a lot of new opportunities because the socio-

inspired strategies transform the optimization 

landscapes. 

Population-based algorithms are very 

unique solutions to complicated problems; each 

algorithm is influenced by many different 

sources [60]. The GRO [61] cleverly imitates 

the methods used by prospectors during the 

Gold Rush Era that involve migration, 

collaboration, and panning. OOBO [62] uses 

one-to-one interactions very innovatively, 

eliminating the dependence on particular 

persons for population changes. Moreover, PbA 

[63] is a population-based evolutionary model 

specifically designed for addressing continuous 

restricted optimization challenges within real-

life engineering applications. 

Swarm algorithms are based on collective 

behavior, which is very common in nature, 

where a group of simple entities, such as 

particles or agents, can collaborate to explore 

solution spaces and provide efficient and 

flexible optimization solutions for different 

problems. Based on the enactment of the 

northern goshawks, the NGO [64] combines 

prey identification and pursuit phases, showing 

a compromise between exploration and 

exploitation. Instead, SABO [20] uses the 

subtraction of average searcher agents to 

perform population position updates. SGO [65] 

proposes an original metaheuristic algorithm 

that borrows from the game dynamics of the 

traditional Korean Squid Game. In this game-

based algorithm, offensive and defensive 

players make different strategic moves, leading 

to an innovative approach for the optimization 

challenges. 

Chemistry-based algorithms use rules 

derived from chemical reactions for 

optimization. Math-based algorithms rely on 

mathematical models, and physics-based 

algorithms utilize physical laws, with both 

approaches working towards solving the 

problem-solving process. EDO [66] draws its 

inspiration from mathematics, utilizing the 

exponential probability distribution model. The 

MGA [67] based on material chemistry, uses the 

structure of chemical compounds and reactions 

in solving engineering problem optimizations. 

Math-based AOA [68] creatively uses 

Archimedes’ Principle from physics to show the 

buoyant force principles confronting the 

intricate optimization problems. FDA [69] is a 

physics-based optimizer that approximates the 

direction of flow in a drainage basin, 

demonstrating its effectiveness in solving 

various mathematical benchmarks and also 

engineering design problems. Another physics-

based optimizer PSA [70] is a great example of 

a physics-based optimizer that uses voltage and 

current wave propagation along the 

transmission lines to achieve superior results in 

engineering applications using just a few coding 

lines. OOPOA is motivated by object-oriented 

programming inheritance, where public, private, 

and protected traits guide population updates, 

promoting both exploitation through elite 

inheritance and exploration via mutation. These 

algorithms, MGA, AOA, FDA, OOPOA, and 

PSA, representing the different classes of 

metaheuristics, offer novel solutions to the 

optimization problems in diverse domains. 

Hybrid and advanced algorithms combine 

the disparate optimization methods, bringing the 

advantages of different techniques to solve the 

problems more effectively. The CCRAO [71] 

introduces a powerful group algorithm by 

merging and modifying three Rao algorithms, 

exhibiting superior performance in optimizing 

real-parameter functions. The hPSO-TLBO [72] 

creatively combines the exploitation abilities of 

PSO with the exploration abilities of TLBO, 

proving effective in addressing various 

benchmark functions. HBWO [73] is inspired 

by the social swimming, foraging, and spiral 

predation behaviors of beluga whales, 

integrating quasi-oppositional learning, 

adaptive strategies, and the Nelder-Mead 

method to enhance search efficiency and 
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convergence. COASaDE [74] draws from the 

foraging behavior of crayfish and the 

adaptability of self-adaptive differential 

evolution, combining symmetric exploration 

and exploitation to robustly solve diverse 

engineering optimization problems. The 

MSSSA [75] employs a circle map, adaptive 

survival escape strategy, and craziness factor, 

showcasing excellent feasibility and practicality 

in solving highly non-linear optimization 

problems, outperforming other state-of-the-art 

algorithms. 

4. Classical engineering optimization using 
metaheuristic algorithms 

In this section, we utilize six well-known 

constrained benchmark optimization problems 

in mechanical engineering: pressure vessel 

design, three‑bar truss design, welded beam 

design, tension/compression spring design, gear 

train design, and speed reducer design, as 

depicted in Figure 4. These issues have distinct 

objective functions, design variables, and also 

constraints. The aim is to test the performance 

of the metaheuristic algorithms that are 

discussed in Section 2. The assessment is based 

on the results presented in the original research 

articles, focusing on solution quality, stability, 

and convergence rate. To evaluate the 

performance of the algorithms on the classical 

engineering application, five key statistical 

metrics are used: Best, Mean, Worst, Standard 

Deviation (Std. Dev.), and Optimal Cost. The 

Best value represents the lowest (most optimal) 

solution cost achieved by an algorithm across 

multiple independent runs, indicating its peak 

performance. The Mean (or average) denotes 

the average solution cost obtained over all runs, 

reflecting the algorithm’s typical performance. 

The Worst value shows the highest solution cost 

recorded, which helps in assessing the 

algorithm's reliability in less favorable 

conditions. Standard Deviation (Std. Dev.) 

measures the variability or consistency of results 

across runs—a lower value signifies stable and 

reliable performance. Finally, the Optimal Cost 

refers to the best-known or theoretically ideal 

solution for the problem, used as a benchmark 

to compare the effectiveness of each algorithm.

 

Figure 4. Real-world applications. 

4.1. Pressure vessel design 

The engineering challenge of pressure 

vessel design, focusing on optimizing costs for 

cylindrical pressure vessels, has a long-standing 

history. Pressure vessel design optimization 

involves finding the most efficient and cost-

effective configuration for a vessel that contains 

pressurized fluids or gases, as depicted in   

Figure 5. The goal is to minimize construction 

costs while meeting safety and performance 

criteria. This process considers crucial factors 

such as the length of the cylindrical section (𝐿), 

inner and head radii (𝑅), head thickness (𝑇ℎ), as 
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well as shell thickness (𝑇ℎ). These four factors 

play a pivotal role in the design of pressure 

vessels [71]. The design must adhere to 

constraints related to buckling load, end 

deflection, shear stress, and bending stress. By 

strategically adjusting these variables, engineers 

aim to balance structural integrity, functionality, 

and cost efficiency in pressure vessel 

construction. The complete optimization 

equation is detailed in equation (1) [29]. Various 

metaheuristic algorithms, as outlined in 

 

 

 

 

Table 2, have been employed to address this 

intricate design problem. 

 

Figure 5. Schematic of the pressure vessel design [71]. 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟: �̅� = [𝑥1𝑥2 𝑥3 𝑥4] = [ 𝑇𝑠  𝑇ℎ  𝑅 𝐿], 

(1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 

𝑓(�̅�) = 0.6224𝑥1𝑥3𝑥4

+ 1.7781𝑥2𝑥3
2  

+ 3.1661𝑥1
2𝑥4  

+ 19.84𝑥1
2𝑥3, 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑔1(�̅�) = −𝑥2 + 0.00954𝑥3 ≤ 0, 

𝑔2(�̅�) = −𝑥1 + 0.0193𝑥3 ≤ 0, 

𝑔3(�̅�) = 𝑥4 − 240 ≤ 0. 

𝑔4(�̅�) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3

+ 1296000

≤ 0, 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒  

𝑟𝑎𝑛𝑔𝑒: 

0 ≤ 𝑥1 ≤ 100, 0 ≤ 𝑥2 ≤

100, 10 ≤ 𝑥3 ≤ 200, 10 ≤ 𝑥4 ≤

200. 

In 

 

 

 

 

Table 2, diverse algorithms were employed 

to address the pressure vessel design challenge, 

revealing noteworthy statistical outcomes. Most 

algorithms demonstrate comparable results 

regarding mean or average values, suggesting 

similar central tendencies. Notably, the HBA 

algorithm performs the best overall with the 

lowest mean (5876.70812), best case 

(5276.6792), and a low standard deviation 

(0.1001), indicating stable performance across 

trials. RPO, hPSO-TLBO, and BOA1 all exhibit 

nearly identical best, mean, and worst-case 

values, with extremely low deviations (1.87E-

12, 2.06E-12, and 9.83E-14, respectively), 

reflecting highly consistent behavior. However, 

HBA still holds superiority in terms of the 

lowest mean and best overall cost. 

OOBO, which previously ranked second, 

now demonstrates a mean of 5880.524, slightly 

higher than HBA, but with a lower worst case 

(5882.658) than several others and a higher 

standard deviation (9.125), indicating more 

variability. Several other algorithms like SABO, 

MOA, CWO, and PEOA also produce closely 
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clustered performance near 5882.9, but do not 

surpass HBA in optimality or consistency.

 

 

 

 

Table 2: Optimizing statistical outcomes in pressure vessel design with diverse algorithms. 

Algorithm Best Case Mean/Average Worst Case STD. Dev. Optimal Cost 

HBA 5276.6792 5876.70812 5877.20827 0.1001 5276.6792 

OOBO 5870.846 5880.524 5882.658 9.125 5870.846 

RPO 5882.895 5882.895 5882.895 1.87E-12 5882.895 

hPSO-TLBO 5882.895451 5882.895451 5882.895451 2.06E-12 5882.895451 

BOA1 5882.8955 5882.8955 5882.8955 9.83E-14 5882.8955 

SABO 5882.901 5882.901 5882.901 1.87E-12 5882.901 

MOA 5882.901 5882.901 5882.901 1.89E−12 5882.901 

CWO 5882.901 5882.901 5882.901 2.94E-12 5882.901 

PEOA 5882.901 5883.043 5884.245 0.316128 5882.901 

LOA 5882.9013 5884.8955 5885.8955 1.87E-12 5882.9013 

WSO 5885.246 5885.246 5885.246 4.287399E-13 5885.246 

BOA2 5885.3263 5885.3263 5885.3263 2.32E-08 5885.3263 

AFT 5885.332773 5885.332773 5885.332773 4.18E-12 5885.332773 

RBMO 5885.332774 5885.333685 5885.348157 2.9161E−03 5885.332774 

CPO 5885.43417 5885.434175 NA 5.85E-09 5885.43417 

EDO 5885.3734 5885.5207 5885.7806 1.16E−01 5885.3734 

LCA 5886 5887 5890 9.632E–01 5886 

POA 5883.0278 5887.082 5894.256 24.35317 5883.0278 

WaOA 5884.8824 5887.201 5894.172 21.041638 5884.8824 

DTBO  5885.3548 5887.821 5897.107 21.02136 5885.3548 

NGO 5885.4958 5888.0206 5890.1952 1.0215 5885.4958 

PO 5885.3997 5891.8068 5908.025 8.4746 5885.3997 

COA 5893.134 5897.061 5899.22 2.52E+01 5893.134 

GRO 5886.4068 5912.5944 6000.9867 26.67 5886.4068 

MSSSA 5735.107 5924.16 6053.142 84.8547 5735.107 

EHO 5885.332774 5927.971008 6157.044368 63.561135 5885.332774 

SO 5887.529768 5989.809193 6247.616958 104 5887.529768 

MGA 6059.71435 6059.694923 6273.765974 0.028912058 6059.71435 

CCRAO 6059.71433 6060.28032 6075.93125 2.8927 6059.71433 

CVSO 6059.714335 6060.860093 6090.621316 5.998 6059.714335 

PSA 5886.989709 6077.829557 NA 308.1664002 5886.989709 

COASaDE  5.89E+03 6.09E+03 7.32E+03 4.49E+02 5.89E+03 

HO 6059.7 6102.7 7306.6 227.45 6059.7 

AOA 5900 6520 6600 431 5900 

SCO 5885.8 6534 7299 505.5225 5885.8 

OOPOA 5926.9 7207.9 NA  1666.7 5926.9 

FOX NA  12026.01 NA  6544.212 NA  

WWPA 5925.01317 12193.923 7374.8098 1551.0449 5925.01317 

APO NA NA NA NA 5887.614 

4.2. Welded beam design 

In the welded beam design problem, the 

primary goal is to optimize the structural 

configuration of welded beams with the 

overarching objective of minimizing the overall 

cost, all while adhering to specific constraints. 

These constraints encompass various crucial 

factors, including shear stress (𝜏), bending stress 

(𝜎), buckling load (𝑃𝑐), beam deflection (𝛿), and 

additional side constraints, as visually 
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represented in  Figure 6. The complexity of this 

optimization task is encapsulated by the 

consideration of four pivotal decision variables: 

welded thickness (ℎ), bar length (l), bar height 

(t), and thickness of the bar (𝑏) [76]. These 

variables play a pivotal role in determining the 

structural integrity and efficiency of the welded 

beams. 

To formally define and address the 

intricacies of the problem, mathematical 

expressions are presented in equation (2) [29]. 

These equations encapsulate the relationships 

and interdependencies among the decision 

variables and constraints, providing a 

systematic and quantifiable framework for the 

optimization process. As a result, the welded 

beam design problem is not only about coming 

up with a cost-effective structure, but it also 

requires a rigorous mathematical formulation to 

help the optimization process meet engineering 

standards and limits. 

 

Figure 6. Welded beam design problem [76]. 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟: �̅� = [𝑥1𝑥2 𝑥3 𝑥4] = [ℎ 𝑙 𝑡 𝑏], 

(2) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓(�̅�) = 0.04811𝑥3𝑥4(𝑥2 + 14) + 1.10471𝑥2𝑥1
2, 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔1(�̅�) = 𝑥1 − 𝑥4 ≤ 0, 

𝑔2(�̅�) = 𝛿(�̅�) − 𝛿𝑚𝑎𝑥 ≤ 0, 

𝑔3(�̅�) = 𝑃 ≤ 𝑃𝑐(�̅�), 

𝑔4(�̅�) = 𝜏𝑚𝑎𝑥 ≥ 𝜏(�̅�), 

𝑔5(�̅�) = 𝜎(𝑥) − 𝜎𝑚𝑎𝑥 ≤ 0, 

𝑊ℎ𝑒𝑟𝑒: 
𝜏(𝑥

→
) = √(𝜏′)2 + 2𝜏′𝜏′′

𝑥2

2𝑅
+ (𝜏′′), 𝜏′ =

𝑃

√2𝑥1𝑥2

, 𝜏′′ =
𝑀𝑅

𝐽
, 

𝑀 = 𝑃(𝐿 +
𝑥2

2
), 𝑅 = √

𝑥2
2

4
+ (

𝑥1 + 𝑥3

2
)2, 𝜎(𝑥

→
) =

6𝑃𝐿

𝑥4𝑥3
2 , 

𝐽 = 2{√2𝑥1𝑥2[
𝑥𝑥

2

4
+ (

𝑥1 + 𝑥3

2
)2]}, 𝛿(𝑥

→
) =

6𝑃𝐿3

𝐸𝑥4𝑥3
2 , 
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𝑃𝑐(𝑥
→

) =
√𝑥3

2𝑥4
6

0

4.013𝐸

𝐿2
, (1 −

𝑥3

2𝐿
√

𝐸

4𝐺
), (1 −

𝑥3

2𝐿
√

𝐸

4𝐺
), 

𝑃 = 6000 𝑙𝑏, 𝐿 = 14 𝑖𝑛, 𝛿max = 0.25 in, 𝐸 = 30 × 106psi, 

𝜏max = 13,600 psi and 30,000 psi 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒:  0.125 ≤ 𝑥1 ≤ 2, 0.1 ≤ 𝑥2 ≤ 10, 0.1 ≤ 𝑥3 ≤ 10, 0.1, ≤ 𝑥4 ≤ 2. 

Table 3, among the optimization algorithms 

listed for the welded beam design problem, 

RBMO achieved the best overall performance, 

consistently yielding an optimal cost of 

1.6702177 across all evaluated cases (best, 

mean, and worst), with an exceptionally low 

standard deviation of 1.0289E−09, indicating 

minimal variation in its results. This level of 

consistency and optimality highlights RBMO's 

strong reliability and effectiveness in this 

specific optimization task. 

In comparison, the COASaDE algorithm 

also performed well, achieving a best case and 

mean value of 1.674, and a worst case of 1.676, 

with a slightly higher standard deviation of 

0.000894. This suggests a modest increase in 

variability relative to RBMO. Although 

COASaDE remained close to the optimal cost, 

its higher variance places it slightly behind 

RBMO in terms of consistency and robustness. 

Other algorithms, such as MGA, GCRA2, and 

HBWO, also demonstrated competitive results 

but exhibited greater standard deviations and 

higher worst-case values. 

 

Table 3: Optimizing statistical outcomes in welded beam design with diverse algorithms. 

Algorithm Best Case Mean/Average Worst Case STD. Dev. Optimal Cost 

RBMO 1.6702177 1.6702177 1.6702177 1.0289E−09 1.6702177 

COASaDE  1.674 1.674 1.676 0.000894 1.674 

MGA 1.672966512 1.678791422 1.687172363 0.0044147 1.672966512 

GCRA2 1.6952 1.6952 1.6952 0.000000568 1.6952 

HBWO 1.695252 1.695269 1.695288 1.08E-05 1.695252 

MSSSA 1.69527 1.6978 0.7017 0.002012 1.69527 

LCA 1.715 1.72 1.815 2.248E–02 1.715 

LOA 1.7246798 1.7246798 1.7246798 2.28E-16 1.7246798 

BOA2 1.7246798 1.7246798 1.7246798 2.28E-16 1.7246798 

BOA1 1.7246798 1.7246798 1.7246798 1.2E-17 1.7246798 

WOA 1.7246798 1.7246798 1.7246798 2.3E-16 1.7246798 

hPSO-TLBO 1.724679823 1.724679823 1.724679823 2.51E-16 1.724679823 

RPO 1.72468 1.72468 1.72468 2.28E-16 1.72468 

WSO 1.724848 1.724848 1.724848 1.81299E-16 1.724848 

HBA 1.72085 1.72485 1.724854 9.18E−10 1.72085 

PO 1.724851 1.724851 1.724852 0.000000253 1.724851 

CCRAO 1.724852 1.724852 1.724852 9.7241E-09 1.724852 

AFT 1.724852 1.724852 1.724852 1.05446E-15 1.724852 

SABO 1.724852 1.724852 1.724852 6.83E-16 1.724852 

EHO 1.724852 1.724852 1.724852 0 1.724852 

CWO 1.724852 1.724852 1.724852 1.08E-15 1.724852 

GRO 1.724852309 1.72485383 1.72488705 5.72E–05 1.724852309 

CVSO 1.724852 1.724854 1.724862 0.00000154 1.724852 

CPO 1.72487 1.724865849 NA 1.44E-16 1.72487 

PEOA 1.724856 1.724892 1.724948 3.11E−05 1.724856 

HO 1.7249 1.7249 1.7249 1.16E-15 1.7249 

OOBO 1.720985 1.725021 1.727205 0.003316 1.720985 

NGO 1.725202 1.725312 1.725496 0.0000106 1.725202 
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COA 1.7249 1.726405 1.72861 0.004124 1.7249 

POA 1.724968 1.726504 1.728593 0.004328 1.724968 

WaOA 1.724901 1.7270245 1.731028 0.005142 1.724901 

DTBO  1.72491 1.728057 1.730148 0.004332 1.72491 

PSA 1.725030657 1.732722965 NA 5.14617E−03 1.725030657 

SCO 1.6702 1.7407 2.1182 0.0888 1.6702 

SO 1.724851931 1.769948593 2.455648906 0.137 1.724851931 

WWPA 1.727467 1.7973 NA 0.0832  NA 

PbA 1.724872 1.799315 2.278059 0.12 1.724872 

FDA 1.695499 1.8101953 2.2496189 0.1626 1.695499 

CCE 1.6648 1.8221 2.1007 0.1671 1.6648 

OOPOA 2.2558 2.297 NA  0.0857 2.2558 

APO NA NA NA NA 1.724854 

DRA NA NA NA NA 1.72485 

4.3. Tension/Compression spring design 

The objective in addressing the 

tensile/compression spring problem, as 

described by [77], is to minimize the spring's 

weight while satisfying constraints 

encompassing deviation (𝑔1), shear stress (𝑔2), 

surge frequency (𝑔3), and deflection (𝑔4) [78]. 

This optimization task involves three key 

decision variables: wire diameter (d), mean coil 

diameter (D), and the number of active coils (N), 

as outlined in Figure 7. The mathematical 

representation of this problem is detailed in the 

equation (3) [29,79]. 

 

Figure 7. Tension/compression spring design problem [78]. 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟: �̅� = [𝑥1𝑥2 𝑥3] = [𝑑 𝐷 𝑁], 

(3) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓(�̅�) = (𝑥3 + 2)𝑥2𝑥1
2, 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
𝑔1(�̅�) = 1 −

𝑥2
3𝑥3

71785𝑥1
4 ≤ 0, 

𝑔2(�̅�) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥1
3𝑥2 − 𝑥1

4)

+
1

5108𝑥1
2

− 1 ≤ 0, 

𝑔3(�̅�) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0, 

𝑔4(�̅�) =
𝑥1 + 𝑥2

1.5
− 1 ≤ 0. 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒  

𝑟𝑎𝑛𝑔𝑒:  

0.05 ≤ 𝑥1 ≤ 2.00, 0.25 ≤

𝑥2 ≤ 1.30, 2.00 ≤ 𝑥3 ≤ 15.0 

Table 4 displays the results of various metaheuristic 

algorithms used to design tension/compression springs. 

Among the optimization algorithms, BOA1, LOA, 

BOA2, WOA, hPSO-TLBO, RPO, SABO, and CWO 

achieved the best ranks, consistently maintaining identical 

values for best case, mean, and worst case, all at 

0.0126019. These algorithms demonstrated minimal 

variation in their results, with an exceptionally low 

standard deviation of around 3.62E-19, indicating 

outstanding precision and reliability in solving the 

optimization problem. This makes them the most stable 

and optimal solutions for this design challenge. 

In terms of performance, algorithms such as AFT 

and HO also produced consistent results, though with 

slightly higher values for mean and worst case (around 

0.012665), and displayed a higher standard deviation 

compared to the top performers. Conversely, algorithms 

like MOSA, LCA, and HOA showed large deviations, 

indicating poor performance. The key takeaway is that 
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BOA1, LOA, BOA2, WOA, hPSO-TLBO, RPO, SABO, 

and CWO emerged as the best-performing algorithms, 

achieving the optimal cost with minimal fluctuations in 

their results.

 

Table 4: Optimizing statistical outcomes in tension/compression spring design with diverse algorithms. 

Algorithm Best Case Mean/Average Worst Case STD. Dev. Optimal Cost 

BOA1 0.0126019 0.0126019 0.0126019 3.62E–19 0.0126019 

LOA 0.0126019 0.0126019 0.0126019 6.88E-18 0.0126019 

BOA2 0.0126019 0.0126019 0.0126019 6.88E-18 0.0126019 

WOA 0.0126019 0.0126019 0.0126019 6.96E-18 0.0126019 

hPSO-TLBO 0.012601907 0.012601907 0.012601907 7.58E-18 0.012601907 

RPO 0.012602 0.012602 0.012602 6.88E-18 0.012602 

SABO 0.012665 0.012665 0.012665 1.32E-18 0.012665 

CWO 0.012665 0.012665 0.012665 1.54E-18 0.012665 

AFT 0.012665 0.012665 0.012665 3.21668E-10 0.012665 

HO 0.012665 0.012665 0.012665 2.95E-09 0.012665 

RBMO 0.0126652 0.0126654 0.012666 2.3665E−07 0.0126652 

EDO 0.0126653 0.0126655 0.0126663 2.21E−07 0.0126653 

MGA 0.01266523 0.01266558 0.01266723 0.000000565 0.01266523 

CCRAO 0.012665 0.012666 0.012668 2.1639E-06 0.012665 

WWPA 0.01267 0.01267 0.01267 0.00135 0.01267 

GRO 0.012665 0.0126775 0.0127526 1.84E–05 0.012665 

OOBO 0.012655 0.012678 0.012668 0.00101 0.012655 

PEOA 0.01266 0.01268 0.01272 2.0E−05 0.01266 

NGO 0.012672 0.01268241 0.012702561 0.0000204 0.012672 

CVSO 0.012665 0.012687 0.012729 0.0000106 0.012665 

POA 0.012666 0.012688 0.012677 0.001022 0.012666 

COA 0.012666 0.012688 0.012697 0.001023 0.012666 

HBWO 0.012663 0.012699 0.012942 7.20E-05 0.012663 

CCE 0.0127 0.0127 0.0129 0.0004 0.0127 

PO 0.0127 0.0127 0.0128 0 0.0127 

WaOA 0.012672 0.012701 0.012706 0.001106 0.012672 

EHO 0.012665 0.012804 0.014093 0.000359 0.012665 

MSSSA 0.012 665246 0.013007 0.015256 0.000589 0.012 665246 

PSA 0.0127226 0.0132851 NA 0.0006535 0.0127226 

AOA 0.012681 0.013369 0.015625 0.000744 0.012681 

PbA 0.012665 0.013404 0.01705 0.0013 0.012665 

SO 0.012672535 0.013633985 0.017773158 0.0012 0.012672535 

SCO 0.0127 0.0159 0.0178 0.0017 0.0127 

APO         0.01266529 

HOA         1.8118E−02 

DRA         0.012665 

4.4. Speed reducer design 

The objective in tackling the design problem 

of the speed reducer, as depicted in Figure 8, is 

to minimize the overall weight of the reducer, 

considering seven crucial variables denoted by 

x1~x7: face width (b), module of teeth (m), 

pinion teeth count (z), first shaft length between 

bearings (l1), second shaft length between 

bearings (l2), and diameters of the first (d1) and 

second shafts (d2) [80]. Equation (4) [81,82] 

provides the mathematical optimization 

formulation for this particular problem. 
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Figure 8. Speed reducer design problem [80]. 

Min: 𝑓(𝑥
→

) = 0.7854𝑥1𝑥2
2(3.3333𝑥3

2 + 14.9334𝑥3

− 43.093) − 1.508(𝑥6
2 + 𝑥7

2)

+ 7.4777(𝑥6
3 + 𝑥7

3)

+ 0.7854(𝑥4𝑥6
2 + 𝑥5𝑥7

2), 

(4) 

Table 5 presents the statistical outcomes 

derived from the application of the 

metaheuristic algorithms to speed reducer 

design. Among all the optimization algorithms 

applied to the speed reducer design problem, 

FDA achieved the best overall performance by 

a significant margin. It obtained the lowest best 

case, mean, and worst-case values — all equal 

to 2749.583, indicating not only optimality but 

also exceptional consistency, with a minuscule 

standard deviation of 5.6753e-06. This suggests 

FDA reliably converged to the best-known 

solution across all runs. Following FDA, HBA 

had the next best best case at 2595.54, but its 

mean and other stats were notably worse, 

reflecting inconsistency. In terms of average 

performance (Mean), most algorithms clustered 

around the 2994–2996 range, but none 

outperformed FDA.

Table 5: Optimal statistical outcomes with varied algorithms for Speed reducer design. 

Algorithm Best Case Mean/Average Worst Case STD. Dev. Optimal Cost 

FDA 2749.583 2749.583 2749.583 5.6753E-06 2749.583 

LCA 2990 2991 2994 8.927E–01 2990 

OOBO 2989.852 2993.01 2998.425 1.2241 2989.852 

EDO 2994.245 2994.248 2994.27 4.060E−04 2994.245 

SGO 2994.424815 2994.455346 2994.489988 0.020251208 2994.424815 

WSO 2994.47 2994.47 2994.47 2.62549E-13 2994.47 

MGA 2994.438869 2994.47065 2996.558237 4.72E-16 2994.438869 

PO 2994.471047 2994.471051 2994.471057 0.000003 2994.471047 

EHO 2994.471066 2994.471066 2994.471066 0 2994.471066 

AFT 2994.471066 2994.471066 2994.471073 1.41972E-06 2994.471066 

HBA 2595.54 2995.54243 2995.5 2.311E-12 2595.54 

SO 2995.542437 2995.542437 2995.542437 2995.542437 1.35E−12 

SCO 2994.4 2995.8 2999.3 1.0883 2994.4 
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MOA 2996.348 2996.348 2996.348 9.43E−13 2996.348 

SABO 2996.348 2996.348 2996.348 9.33E-13 2996.348 

RPO 2996.348 2996.348 2996.348 9.33E-13 2996.348 

CWO 2996.348 2996.348 2996.348 1.47E-12 2996.348 

hPSO-

TLBO 

2996.348165 2996.348165 2996.348165 408 3000 2996.348165 

PEOA 2996.3482 2996.3482 2996.3482 3.927E−09 2996.3482 

LOA 2996.3482 2996.3482 2996.3482 9.33E-13 2996.3482 

BOA2 2996.3482 2996.3482 2996.3482 9.33E-13 2996.3482 

BOA1 2996.3482 2996.3482 2996.3482 4.91E-14 2996.3482 

NGO 2994.2471 2997.481 2999.091 1.7809 2994.2471 

WaOA 2996.3482 2999.4961 3000.972 1.2463198 2996.3482 

POA 2996.3482 2999.88 3001.491 1.782335 2996.3482 

AOA 3000 3000 3000 1.22E-12 3000 

COA 2996.348 3000.1 3001.261 1.160348 2996.348 

OOPOA 2994.9 3005.1 NA 47.5801 2994.9 

APO 2994.471 NA NA NA 2994.471 

4.5. Gear train design 

The challenge in gear train design revolves 

around the optimization of discrete decision 

variables—represented by the teeth number (Ta, 

Tb, Td, and Tf) and the radius of gears—to 

minimize cost while adhering to the constraints 

of achieving a specified gear ratio of 1/6.931 

[71], see Figure 9. These design variables, 

constrained by integer limits ranging from 12 to 

60 teeth, add complexity to the optimization 

process. Balancing the gear train's cost and 

meeting the precise gear ratio requirement 

underscores the intricate nature of this 

engineering challenge. The mathematical 

model, as shown in the equation (5), represents 

the gear train design problem[83]. 
 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟: �̅� = [𝑥1𝑥2 𝑥3 𝑥4] =

[𝑇𝐷  𝑇𝐵  𝑇𝐴  𝑇𝐹], 

(5) 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 

𝑓(�̅�) = ((
1

6.931
) − (

𝑥2𝑥3

𝑥1𝑥4

))

2

, 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑟𝑎𝑛𝑔𝑒:  

2 ≤ 𝑥𝑖 ≤ 60, 𝒊 = 1,2,3,4. 

 

 

 

Figure 9. Gear train design problem [71]. 

Table 6 shows the results of gear train design 

optimization using several metaheuristic 

techniques. Among the algorithms evaluated for 

the gear train design optimization, MGA clearly 

achieved the best performance across all 

statistical measures. It recorded the lowest best 
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case (1.06e-19), mean (7.69e-14), and worst 

case (7.62e-13) values, along with the lowest 

standard deviation (1.78e-13), indicating high 

stability and consistency. Additionally, MGA 

also achieved the lowest optimal cost (1.06E-

19), confirming its superiority in both solution 

quality and reliability. 

Other algorithms such as EDO, CCRAO, 

CVSO, and FDA performed significantly worse, 

with higher mean, worst-case, and standard 

deviation values. Their best cases were 

consistently around 2.70E-12, which is still 

orders of magnitude worse than MGA. Notably, 

HOA did not have complete statistical data 

available, but it did report a competitive optimal 

cost of 1.77E-14, making it potentially 

promising—though without full statistics, its 

reliability cannot be confirmed. Overall, MGA 

not only achieved the top rank across all criteria 

but also demonstrated robust and consistent 

performance. 

Table 6: Optimal statistical outcomes with varied algorithms for gear train design. 

Algorithm Best Case Mean/Average Worst Case STD. Dev. Optimal Cost 

MGA 1.06E-19 7.69E-14 7.62E-13 1.78E-13 1.06E-19 

EDO 2.7008E−12 4.3589E−11  3.06755E−10 6.26E−11 2.7008E−12 

CCRAO 2.70E-12 3.52E-10 1.01E-09 3.52E-10 2.70E-12 

CVSO 2.700857E-12 7.063214E-10 1.51E-09 8.350000E-10 2.700857E-12 

FDA 2.70E-12 7.56E-10 3.30E-09 8.05E-10 2.70E-12 

HOA         1.77E−14 

4.6. Three‑Bar truss design 

Figure 10 illustrates the truss structure, 

comprising three bars with distinct cross-

sectional areas (A1, A2, and A3), where A1 

equals A3. These bars converge at a shared 

node, to which a P load is attached. The intervals 

between the supporting points of the three bars 

are consistent and marked as 'h' while the 

vertical dimension from the supporting points to 

the shared node is also 'h'. The primary goal is 

to minimize the weight of the truss structure, 

with the design parameters being A1 and A2. 

There are three stresses, deflection, and 

buckling constraints, along with two variables 

(x1 and x2) that can be adjusted to modify the 

sectional areas. Equation (6) [29] outlines the 

objective function and its associated constraints. 

 

Figure 10. Three‑bar truss design problem [84]. 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟: �̅� = [𝑥1𝑥2] = [𝐴1𝐴2], 

(6) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓(�̅�) = 𝑙 × (2√2𝑥1 + 𝑥2), 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔1(�̅�) =
𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎

≤ 0, 

𝑔2(�̅�) =
√2𝑥1 + 𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎

≤ 0, 

𝑔3(�̅�) =
1

√2𝑥2 + 𝑥1

𝑃 − 𝜎 ≤ 0, 

𝑤ℎ𝑒𝑟𝑒: 𝑙 = 100, 𝑃 = 2, σ = 2  
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𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑟𝑎𝑛𝑔𝑒: 

0 ≤ 𝑥1, 𝑥2 ≤ 1,  The effects of using various metaheuristic 

algorithms to tackle the three-bar truss design 

issue have been reported in 

Table 7. Based on the table, the CPO 

algorithm achieved the best performance 

overall, with a best case and mean value of 

263.89584 and a standard deviation of 0, 

indicating perfect consistency across all runs. 

Although the value is slightly less precise than 

others (truncated rather than rounded), it still 

reflects the optimal cost with zero variability. 

Following CPO, EDO, RBMO, and CCRAO 

also reached the same optimal cost of 

263.895843, but with slightly higher standard 

deviations. Among these, EDO had the lowest 

standard deviation (2.99E-14), making it the 

second most consistent and reliable performer 

after CPO. Comparing EDO, RBMO, and 

CCRAO, we see that all achieved identical best, 

mean, and worst-case results, but EDO's lower 

STD sets it apart, followed by RBMO (1.0722E-

09) and CCRAO (3.9286E-07). MGA also 

reached the optimal cost but showed a slightly 

higher worst-case value and thus a marginally 

higher deviation.

Table 7: Optimal statistical outcomes with varied algorithms for three‑bar truss design. 

Algorithm Best Case Mean/Average Worst Case STD. Dev. Optimal Cost 

CPO 263.89584 263.8958434 NA 0 263.89584 

EDO 263.895843 263.895843 263.895843 2.99E-14 263.895843 

RBMO 263.895843 263.895843 263.895843 1.0722E-09 263.895843 

CCRAO 263.89584 263.895843 263.895843 3.9286E-07 263.89584 

MGA 263.8958433 263.8958436 263.8959632 2.05E-14 263.8958433 

CVSO 263.895843 263.895852 263.895979 0.0000115 263.895843 

PSA 263.8958824 263.8984017 NA 2.21516E−03 263.8958824 

COASaDE  263.9 263.9 263.9 8.994E-12 263.9 

APO NA NA NA NA 263.8958 

5. Statistical analysis of the review 
5.1. Total number of studies by year 

Figure 11 shows the yearly distribution of 

the evaluated articles in this study from the years 

2020 to 2024. The chart indicates that most of 

the articles considered for this review were 

published in 2023 and 2024, accounting for a 

total of thirty-three articles. On the contrary, the 

smallest number of publications included in this 

review is from 2020. 

 

Figure 11. Total number of studies by year. 

5.2. Frequency of optimization engineering 
problem usage in reviewed articles 

As shown in Figure 12, the main focus of the 

articles evaluated in this review is the use of 

welded beam design to test algorithm 

performance, with a count of 43. This is 

followed by pressure vessel design and 

tension/compression spring testing, each with a 

count of 39. In contrast, gear train design and 

truss bar design were the least utilized in this 

study, used only 6 and 9 times, respectively, for 

algorithm assessment. 
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Figure 12. Frequency of Optimization Engineering Problem Usage in Reviewed Articles. 

5.3. Metaheuristic categorization frequency 

This subsection presents the frequency 

distribution of metaheuristic algorithm 

categorizations based on the 48 algorithms 

reviewed in this study, covering research 

published from 2020 to 2024. Figure 13 shows 

the distribution of the metaheuristic algorithm 

classification, emphasizing some very important 

trends. For instance, nineteen algorithms have 

been developed in the category of bio-

inspired/nature-inspired algorithms, among the 

total 48 reviewed in this study. This reveals that 

it is a considerable direction with common 

approaches for solving a wide variety of 

optimization problems. Moreover, nine 

algorithms have been devised drawing 

inspiration from human behavior. Furthermore, 

five algorithms have been developed based on 

hybrid and advanced approaches, indicating 

their broad applicability and significant 

influence on researchers developing new 

algorithms. Moreover, three algorithms have 

been developed for each of the population-

based, socio-inspired, and math-based 

categories. 

On the contrary, physics-based and swarm-

based inspiration have resulted in two 

algorithms, each of which is among just 48 

articles evaluated; thus, they show a 

comparatively low prevalence. Secondly, less 

frequently used sources of inspiration include 

chemically based methods, and also game-based 

methodologies, where only one algorithm can 

be found for each category. This distribution 

highlights a tendency towards biology and the 

nature-inspired techniques in the design of 

metaheuristic algorithms. 

 

Figure 13. Metaheuristic categorization frequency. 
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6. Discussion 

While metaheuristic algorithms demonstrate 

amazing versatility in handling difficult 

optimization challenges across multiple 

domains, it is critical to recognize that a one-

size-fits-all solution remains elusive. The nature 

of real-world applications is intrinsically 

heterogeneous, and no single algorithm shines 

in every scenario. This study confirms the 

importance of meticulous selection matched to 

the complexities of certain issue areas. 

In  

 

 

 

Table 2, the results of the algorithms for the 

pressure vessel design problem show that the 

HBA achieved the best overall performance, 

exhibiting the lowest mean and best-case cost, 

along with an impressively low standard 

deviation. This reflects HBA’s effective balance 

of exploration and exploitation, allowing it to 

consistently converge on optimal solutions. In 

contrast, algorithms like WWPA, FOX, and 

OOPOA displayed high variability and 

significantly worse performance metrics. Their 

instability may stem from overly aggressive 

search strategies or insufficient local search 

refinement, making them less suited for the 

strict constraints and cost-efficiency demands of 

the pressure vessel design problem. 

In Table 3, the results of the algorithms for 

the welded beam design problem show that 

RBMO emerged as the top performer, achieving 

not only the optimal cost but also zero variation, 

indicating exceptional stability and robustness. 

This suggests that its cooperative behavior and 

adaptive memory mechanisms are highly 

effective for structural design problems 

involving stress and deflection constraints. On 

the other hand, algorithms like CCE, FA, and 

OOPOA performed poorly, exhibiting high 

deviations, which highlights their limitations in 

handling finely constrained mechanical 

structures. 

In Table 4, the results for the 

tension/compression spring design problem 

show that a group of algorithms — BOA1, 

LOA, BOA2, WOA, and hPSO-TLBO — all 

achieved optimal and identical best, mean, and 

worst values with near-zero standard deviation. 

This performance demonstrates their suitability 

for problems characterized by a small number of 

variables and tight constraints. Notably, the 

hybrid PSO–TLBO algorithm stands out by 

integrating two powerful strategies, thereby 

enhancing both convergence speed and solution 

accuracy. In contrast, SCO and SO performed 

poorly due to inconsistent convergence and 

inadequate constraint handling. Overall, it can 

be observed that more algorithms achieved near-

optimal solutions in this problem. 

In Table 5, the results of the algorithms for 

the speed reducer design problem are presented. 

FDA, a physics-inspired optimizer, achieved the 

best results in all categories with nearly zero 

variance. Its deterministic flow model appears 

particularly effective for multi-variable 

engineering designs, where mechanical 

relationships resemble fluid dynamics. Most 

other algorithms clustered around the 2994–

2996 cost range but exhibited lower stability or 

optimality, suggesting they were less capable of 

navigating the high-dimensional space with 

precision. 

In Table 6, the results for the gear train 

design problem—which involves discrete 

variables and a specific gear ratio constraint—

show that MGA significantly outperformed all 

other algorithms, achieving nearly zero error 

and variability. This suggests that its chemistry-

inspired mechanisms enable efficient 

exploration of discrete solution spaces. In 

contrast, algorithms like CVSO and FDA 

exhibited higher deviations, likely due to 

inadequate adaptation for discrete and integer-

constrained optimization tasks. 

Finally, in the three-bar truss design 

problem, as shown in Table 7, CPO achieved 

perfect consistency with a standard deviation of 

zero. Other top performers, such as EDO, 

RBMO, and CCRAO, also reached optimal 

costs, albeit with marginal variability. These 

results indicate that these algorithms are well-

suited for structural problems characterized by 

low dimensionality and high sensitivity to 

variable changes. 
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In addition, the study demonstrates some of 

the many shortcomings of metaheuristic 

algorithms. The changing world of technology 

and also engineering presents a new challenge 

that the algorithms must be continually adapting 

to, thus necessitating constant changes. The 

identification of these shortcomings encourages 

a joint undertaking to improve and develop the 

metaheuristic algorithms, ensuring their 

continually relevant and effective use in the face 

of changing real-world applications. 

This analysis underscores the “No Free 

Lunch” theorem in optimization: no single 

algorithm is universally best. Therefore, 

algorithm selection must be tailored to problem-

specific characteristics such as variable types 

(continuous vs. discrete), constraint tightness, 

and problem dimensionality. The results 

highlight the importance of not only comparing 

performance statistics but also understanding 

the underlying algorithmic dynamics to guide 

effective application. 

7. Challenges and future trends in modern 
engineering optimization 

Despite significant progress in applying 

metaheuristic algorithms to classical 

engineering problems, modern challenges 

remain—particularly in scaling and adapting 

these algorithms to complex, high-dimensional, 

and dynamic systems [85]. They must now 

handle real-time constraints, noisy 

environments, and conflicting multi-objective 

functions with greater efficiency. In emerging 

applications like Smart Grid Optimization [86], 

the need for fast and decentralized decision-

making is critical, involving tasks such as 

energy forecasting, load balancing, and fault 

detection. Similarly, Electric Vehicle Battery 

Management Systems (BMS) [87] demand real-

time optimization of thermal regulation, 

charging cycles, and battery health, often within 

resource-constrained embedded platforms. In 

the field of nanomaterials, optimization plays a 

key role in designing atomic-scale structures 

and improving material performance, requiring 

hybrid algorithms that integrate domain 

knowledge and simulation tools. 

Looking forward, there is a growing 

emphasis on intelligent and self-adaptive 

metaheuristics that can dynamically adjust 

parameters or strategies based on the problem 

context. The integration of machine learning, 

particularly reinforcement learning and 

surrogate modeling, is helping improve 

convergence rates and efficiency in black-box or 

expensive optimization scenarios [88]. 

Additionally, researchers are exploring bio-

computing, quantum-inspired algorithms, and 

neuromorphic computing to solve engineering 

or healthcare problems  [89,90]. The diversity of 

applications reinforces the No Free Lunch 

Theorem [91]—no single algorithm excels 

across all tasks—hence the push toward 

modular and hybrid frameworks. As 

optimization becomes central to smart systems 

and sustainable technologies, future trends will 

prioritize not only performance but also 

transparency, scalability, and ethical 

considerations. 

8. Conclusion 

In conclusion, a detailed analysis and 

classification of the metaheuristic algorithms 

allowed determining that each type possesses 

unique features, which make it more appropriate 

for solving some engineering problems. 

Notably, among the categorized algorithms, the 

bio-inspired/nature-inspired algorithm HBA 

demonstrated exceptional performance in 

pressure vessel design. Additionally, the human 

behavior-based algorithms, WSO displaying 

remarkable stability in tension/compression 

spring design, and MOA excelling in the welded 

beam design problem, highlight the efficacy of 

these approaches in addressing diverse 

engineering tasks. 

Within the domain of three-bar truss design, 

the hybrid and advanced algorithm CCRAO 

emerged as a standout performer, showcasing 

excellence in both mean and worst-case 

scenarios. When addressing the challenge of 

designing a speed reducer, the FDA 

demonstrated proficiency by utilizing principles 

grounded in physics. This approach effectively 

led to the convergence of optimal solutions and 

the reduction of the overall weight of the 
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reducer. In the context of the Gear Train Design 

problem, the MGA, belonging to the chemistry-

based algorithms category, has proven to be a 

superior performer. This classification 

highlights the diverse strengths and applications 

of metaheuristic algorithms across various 

engineering optimization challenges. 

The major advantage of metaheuristic 

algorithms lies in their flexibility and ability to 

escape local optima, making them suitable for 

solving complex, non-linear, and multi-modal 

problems across domains. For instance, bio-

inspired and swarm-based algorithms exhibit 

excellent global search capabilities and 

adaptability. Hybrid algorithms combine 

strengths from multiple methods, often 

improving convergence and solution quality. 

Moreover, human behavior-based algorithms 

introduce innovative mechanisms inspired by 

real-life decision-making. 

However, these algorithms are not without 

drawbacks. A common limitation is the lack of 

guaranteed convergence to the global optimum. 

Many algorithms require careful tuning of 

parameters, and performance can be highly 

problem-dependent. In some cases, 

metaheuristics may show slow convergence or 

excessive computational cost due to extensive 

evaluations, especially for large-scale problems. 

Additionally, their stochastic nature can lead to 

inconsistent results across different runs without 

proper control mechanisms. 

While this study focuses on classical 

engineering applications, the underlying 

methodology and findings have the potential to 

generalize to other optimization tasks, such as 

machine learning hyperparameter tuning [92] 

and logistics optimization. These domains 

similarly involve complex search spaces, 

multiple objectives, and computational 

constraints, making them suitable candidates for 

the proposed approach. Future research can 

explore this transferability to validate the 

method’s robustness across varied application 

areas. 

Hybrid optimization approaches, which 

combine deep learning with metaheuristic 

algorithms, have shown promising 

improvements in optimization performance. 

Deep learning can identify patterns or promising 

regions in the search space, while metaheuristics 

like Genetic Algorithms can explore these 

regions more effectively. Although impactful, 

this paper does not address such hybrid 

strategies, which limits the scope of its 

discussion on advanced optimization 

techniques. 

Future studies should concentrate on 

merging metaheuristic algorithms, utilizing the 

characteristics of several methodologies to 

develop better problem-solving 

capabilities. The flexibility of these algorithms 

to address the current or emerging engineering 

problems, their scalability for bigger tasks and 

often comparing them with older method can 

help us better understand how they are based 

on. This study presents the basis for improving 

applications of metaheuristic algorithms in 

engineering optimization, pointing out how 

relevant method choice is to a specific problem 

domain. Furthermore, future research should 

also explore AI-metaheuristic hybrid models to 

enhance both solution quality and 

computational efficiency. These models offer 

dynamic and adaptive optimization capabilities, 

especially valuable for complex or high-

dimensional problems. Including such 

approaches could significantly broaden the 

applicability and robustness of optimization 

frameworks. 

While the review focuses on academic 

benchmarks, real-world deployment of 

metaheuristics poses challenges such as high 

computational cost, hardware limitations, and 

limited interpretability. Implementing these 

methods in industrial settings also requires 

addressing integration issues and compliance 

constraints. Future work should explore ways to 

adapt metaheuristics to these practical 

limitations for more effective real-world 

application. 
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