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The detection of a person's membership in a family is crucial in many cases, and the 

need for it becomes urgent during and after wars and natural disasters. While DNA 

testing and facial images are common methods for kinship detection, they have 

limitations in certain scenarios. This paper presents an innovative approach to 

intrafamily kinship classification using palm skin texture images, a modality not 

previously explored for this purpose. Unlike conventional palm biometric verification 

aimed at individual identification, this research investigates inherited skin texture 

patterns to establish familial relationships. A hand palm dataset was created from the 

MKH (Mosul Kinship Hand) images dataset. It contains 332 segmented and annotated 

skin images from 84 individuals across 15 families, with multiple samples per person. 

Two deep convolutional neural network pre-trained models (VGG16 and 

EfficientNetB0) were used independently for feature extraction via transfer learning. 

Based on these features, neural network classifiers were designed to detect the 

membership of an individual to one of the given families. The results were evaluated 

using the appropriate metrics and gave a test accuracy of 96% by using EfficientNetB0 

and 79% from VGG16. The findings of this study suggest that hand palm images may 

offer a promising and practical preliminary approach to kinship detection. The dataset 

utilized in this study is accessible upon request from the author to support reproducibility 

and encourage further research. 
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1. Introduction 

It is essential to find families of dead bodies, 

unconscious individuals, old people with 

dementia, and children during and after 

earthquakes, tsunamis, wars, and other types of 

disasters. Finding the blood or genetic relative 

to a person or the family membership [1] are two 

types of kinship detection or verification.  

Kinship detection is crucial in family reunions, 

searching for missing people, and criminal 

investigations. The common method for kinship 

detection is via DNA testing, which is accurate 
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and dependable but requires qualified labs and 

is expensive. It is based on comparing the DNA 

map with the saved maps or with the DNA map 

of a certain person suspected to be a relative [2]. 

For some reasons, like the degradation of 

biological samples and the difficulty in finding 

biological samples from kin, genetic kinship 

verification is unapplicable in some 

catastrophes [3]. Anyway, DNA test results are 

very reliable and officially considered.  Kinship 

detection using computer vision is another 

approach and can be used in the same 

application fields [4]. Most studies have 

primarily focused on facial imagery. This 

https://djes.info/index.php/djes
mailto:mazin.haziz@uomosul.edu.iq
mailto:mazin.haziz@uomosul.edu.iq
https://djes.info/index.php/djes/article/view/1711
https://creativecommons.org/licenses/by/4.0/


Mazin H. Aziz/ Diyala Journal of Engineering Sciences Vol (18) No 3, 2025: 148-161 

149 

 

research, however, is driven by the need to 

identify family members in scenarios where 

facial data is either unavailable or unreliable, 

such as in disaster-stricken regions. Facial 

images are used in most cases to find the 

relationship between two people. It is less 

reliable until now and mostly used to detect 

whether two facial images are related or not. It 

is less expensive, doesn’t rely on special tools or 

test labs, very fast, and can be applied using an 

ordinary processing unit via suitable software, 

and has attracted many researchers in the last 

few years [5]. Another field of application is 

criminal investigations, which needs the 

integration of many resources to solve criminal 

puzzles in the modern era [6].  

Kinship detection from facial features is 

based on the fact that genetic heritages from 

parents cause visual similarities within the 

family. [7]. The same fact applies to other parts 

of the human body. [8 – 11], but it may be hard 

or impossible to detect visually. In the era of 

digital imagery, there is a need for detecting 

kinship in many applications of everyday life, 

from social usage to law enforcement. [12], and 

the revolution in deep learning for visual kinship 

recognition is just beginning [1].  

Deep Transfer Learning (DTL) was 

employed in this work for feature extraction 

from images of the hand palm skin from a 

dataset generated for this purpose. VGG16 and 

EfficientNetB0 models were adopted for this 

purpose. VGG16 is a deep convolutional neural 

network (CNN) developed by the Visual 

Geometry Group at the University of Oxford. 

The architecture consists of 13 convolutional 

layers and 3 fully connected layers. It utilizes 

compact 3x3 filters, each combined with ReLU 

activation functions and max-pooling layers for 

image down-sampling [13]. The number of 

filters starts at 64 in the initial layers and 

increases to 512 in the final layers. VGG16 

offers significant improvements over previous 

architectures due to its depth, enabling it to 

capture more complex features [14], though it is 

computationally intensive and slow to train. 

EfficientNetB0, developed by Google in 2019, 

is a compact and straightforward model from the 

EfficientNet series. It uses a compound scaling 

method to optimize network depth, width, and 

resolution, improving accuracy without 

significantly increasing computational 

demands. With fewer parameters than older 

architectures like VGG16 or ResNet, it achieves 

equal or superior accuracy [15]. It’s ideal 

balance of accuracy and efficiency makes 

EfficientNetB0 widely used in transfer learning 

and various computer vision tasks [16, 17]. Both 

models are widely utilized for transfer 

learning[14, 18], acting as powerful feature 

extractors for image-related tasks due to their 

pre-trained weights on ImageNet, a dataset 

containing over 1.2 million labeled images 

across 1,000 distinct classes. 

The biological mechanism of heredity was 

the basis and the motivation behind this 

research. This paper explores a novel approach 

to using skin texture images for detecting 

kinship or family membership.  The adopted 

methods and tools are clarified, along with the 

demonstration and discussion of the test results 

showing the validity of the proposed idea.  

This study presents the following key 

contributions: 

 Introduction of Palm Skin Texture: 
Proposes palm skin texture as an innovative 

and supplementary biometric modality for 

verifying kinship relationships. 

 Development of a Dedicated Dataset: 
Establishes a new dataset comprising palm 

skin images from 15 families (84 individuals, 

332 images), to facilitate research in kinship 

detection. 

 Comparative Analysis of Deep Learning 

Models: Evaluates two deep transfer learning 

models, VGG16 and EfficientNetB0, for 

extracting features from palm skin images, 

incorporating the impact of data augmentation 

and fine-tuning techniques. 

 Validation of Feasibility: Demonstrates the 

practicality and potential of leveraging deep 

learning methods with palm skin texture for 

effective kinship detection. 

This paper is structured in sequence as 

literature review, dataset generation, 

methodology, results and discussion, and 

conclusions. 
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2. Literature Review 

Since a new idea is presented here and there 

were no previous works on the same research 

line, the following literature review will 

demonstrate the related research lines and 

methods focusing on computer vision and 

machine learning techniques. 

2.1. Face Kinship  

Facial kinship verification (FKV) employs 

computer vision methodologies to ascertain 

familial relationships through the analysis of 

facial images.  It has attracted researchers in the 

last few years and is still facing challenges [19]. 

FKV is based on facial feature extraction, either 

via handcrafted or deep convolutional neural 

network (DCNN) methods [20]. However, it 

still needs more investigation, considering the 

specialty of each family and the differences in 

the relative images [21]. Human FKV was 

compared with computerized methods [22], 

showing superior performance for machines 

with still images and for humans with video 

streams [23]. A method was proposed to reduce 

the aging effect on FKV using two feature sets: 

identity-set and age-set [24]. An improved 

algorithm for kinship detection utilized age 

transformation, where artificial intelligence 

adjusted facial images to resemble nearby ages, 

achieving an accuracy of 76.38% [5]. RR. Fang 

et al. used cropped regions from facial images to 

identify a person's family [25]. In another 

investigation, a comparison method focused on 

identical facial segments from parents and 

children was used instead of analyzing their 

entire facial images [26]. FKV was enhanced 

through a fusion of several types of texture 

descriptors along with facial features [27] or by 

combining two types of features [28]. 

Another approach studied the kinship detection 

of a child based on features from both parents, 

instead of one of them[29] . Other research lines 

focused on identifying identical twins [30], 

finding kinship type [31], and using video for 

FKV rather than photos [32]. The prediction of 

a child's facial appearance from facial images of 

his parents was presented as a new method [33]. 

Two types of features were utilized to classify 

photos of groups of people as family or non-

family using CNN: geometrical and textural 

features of the faces [34]. 

Improvements of 5.2% to 10.1% over prior 

work were achieved using a DCNN employing 

a specific facial key points method [35]. 

3DCNN was utilized for FKV by leveraging 

salient features [36]. Resnet50 model was 

adopted by A. Othmani et al. to extract pattern 

features from facial images of two persons and 

find kinship using a deep neural network 

classifier with 11 classes, achieving an accuracy 

of 60% [7]. C. Bisogni and F. Narducci 

conducted experiments on Siamese Neural 

Networks (SNN) to detect kinship and its type, 

but the results were unpromising for kinship 

type detection [37]. Several other methods for 

kinship detection and classification exist. 

Notably, X. Wu, E. Granger, and colleagues 

were the first to combine audio feature fusion 

with facial image features for kinship 

verification, employing metric learning with 

SNN [38]. E. Liagre and colleagues studied the 

kinship of individuals buried in the 

Middenbeemster cemetery by analyzing the 

structure of foot bones, discovering that these 

anatomical features indicated close genetic 

relationships among them [39]. A study on the 

inheritance of lip-print patterns from parents 

was conducted using samples from the Deutero-

Malay population. The findings indicate that a 

child's lip pattern tends to resemble the mother's 

more closely than the father's [40]. Research by 

G. O'Brien and K. Murphy revealed that 

siblings' fingerprints are largely similar, 

differing only in certain unique characteristics 

that serve as personal identifiers. They also 

discovered that the primary features of 

fingerprints are genetically inherited across 

multiple generations within families [41]. The 

genetic inheritance of fingerprints from parents 

was also investigated using Deep Transfer 

Learning (DTL) techniques [4]. Also, kinship 

detection from hand geometry features through 

DTL was studied and verified with an accuracy 

of 93% [11]. 

2.2. Skin Texture 

Human skin, the body's largest organ, has 

garnered considerable research attention across 

various scientific fields, including computer 
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vision. The skin's texture was analyzed for 

various purposes, including health assessment 

and disease detection or classification, using 

different feature extraction techniques [42]. 

Palmar skin exhibits characteristics that make it 

well-suited for personal verification and 

identification purposes, as it is less susceptible 

to alteration by environmental conditions and 

routine activities. 

2.3. The Research Gap 

Facial image analysis has proven valuable 

for kinship verification. However, its 

application in forensic investigations and 

disaster victim identification is limited by 

challenges such as physical disfigurement and 

privacy concerns. While hand geometry and lip 

prints have emerged as potential tools for 

kinship verification, their development remains 

nascent. To bridge these gaps, palm skin texture 

is introduced as an innovative and 

supplementary biometric modality, offering 

enhanced kinship detection capabilities, 

especially in complex scenarios. 

3. Dataset Generation 

This section demonstrates the generation of 

the skin image dataset from the source dataset. 

3.1. Source Dataset 
 A skin image dataset was generated in this 

study, utilizing the MKH (Mosul Kinship Hand) 

image dataset   [11] as a foundation. The MKH 

dataset comprised hand images collected from 

84 individuals across 15 families. For each 

participant, eight images were acquired, 

consisting of two palm and two dorsal views for 

each hand, with both open and closed finger 

configurations. The age range of the participants 

spanned from 3 to 70 years, with a demographic 

distribution of 44 females and 40 males.  Figure 

1 illustrates representative samples from the 

MKH dataset.  

3.2. Skin image dataset generation 

The generation of our dataset was demonstrated 

here. Only hand palm images from the MKH 

dataset were adopted in this work. Four palm-

hand images for each of the 84 individuals were 

preprocessed to get the palm skin images. Image 

preprocessing consisted of image cropping and 

Figure 1. Samples for two individuals of the MKH 

dataset, showing 8 images per person, with each 

person represented by 8 images. Images of girls from 

two different families; a 7-year-old (a) and a 13-year-

old (b). 

Figure 2. ROI cropping from the MKH dataset 

to generate the palm skin image dataset. 
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resizing. The palm region of images (ROI) was 

cropped to an area of 762×762 pixels from each 

hand image, or resized after cropping if the 

required area size cannot be achieved, as shown 

in Figure 2. Four images were taken for each 

person, except family number 15 had 16 images 

instead of 20 due to the lake in the MKH dataset. 

In total, 332 images were generated, labelled, 

and saved across families, as detailed in Table 

1. Figure 3 shows samples from the generated 

dataset. This dataset was used for training and 

testing the proposed classifier. 

4. Methodology 

The method we proposed for kinship 

verification is based on identifying common 

traits in the skin of the hand palm that are 

inherited from parents to children. These traits 

can be unique to each family. In our approach, 

we used the generated dataset in the subsequent 

steps, as shown in Figure 4. The first step is data 

splitting, where the dataset's images are divided 

into 80% for training and 20% for testing, then 

saved in separate files. The second step involved 

feature extraction using deep transfer learning 

(DTL) techniques, testing two pre-trained 

models, VGG16 and EfficientNetB0, across 

separate experiments. The third step deals with 

designing the classifier. The classification 

layers of each model were replaced with an 

appropriate neural network classifier, 

customized and connected to the feature 

extractor's output. The classifier was designed to 

assign each person to one of the 15 families in 

the dataset. The fourth step involves training, 

where the parameters of the feature extractors 

(VGG16 or EfficientNetB0) remain unchanged, 

and only the classifiers’ parameters are updated 

during the training epochs. After training, the 

models are tested using the dataset's test portion. 

We proposed two main approaches: one using 

Table 1. Summary of the generated dataset. 

 Family # of 

individuals 

per family 

# of 

images 

per 

family 

# of train 

images 

# of test 

images 

Individuals Age-

Range 

(years) 

1 FA 6 24 19 5 F-M-1S-3D 13-60 

2 FB 5 20 16 4 F-M-3D 3-36 

3 FC 6 24 19 5 F-M-3S-1D 10-52 

4 FD 6 24 19 5 F-M-2S-2D 9-59 

5 FE 6 24 19 5 F-M-4S 26-62 

6 FF 7 28 23 5 F-M-4S-1D 20-56 

7 FG 4 16 13 3 F-M-1S-1D 37-70 

8 FH 7 28 22 6 F-M-2S-3D 9-60 

9 FI 4 16 13 3 M-3D 28-60 

10 FJ 3 12 9 3 1S-2D 29-38 

11 FK 5 20 16 4 F-M-2S-1D 17-55 

12 FL 7 28 22 6 F-M-2S-3D 5-42 

13 FM 6 24 19 5 F-M-2S-2D 17-53 

14 FN 5 20 16 4 M-1S-3D 14-60 

15 FO 6 24 19 5 F-M-2S-2D 7-50 

Sum 15 83 332 264 68 12F-14M-

27S-30D 

3-70 

FA: Family A & so on. F-M-1S-2D: Father-Mother-one Son-two Daughters & so on. 

Figure 3. Samples of the generated dataset for hand palm 

skin images. 
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VGG16 and the other using EfficientNetB0. For 

each approach, two experiments were 

conducted—one using the dataset images 

directly and the other employing data 

augmentation—resulting in four distinct 

experiments. Implementation was carried out in 

Python using Google Colab, a cloud-based 

platform. The results were evaluated using 

standard metrics and compared with each other 

and the state-of-the-art. The workflow diagram 

is shown in Figure 5. 
 

4.1. Data splitting 

The dataset was split into two groups for 

machine learning (ML) preparation. The test 

group contains 20% of the data, organized into 

a main folder with 15 subfolders representing 

different families. Similarly, the train group, 

located in another main folder with 15 

subfolders, contains the remaining 80% of the 

data. The test images were carefully selected to 

ensure diversity in age, gender, and image 

quality for reliable results. In total, the training 

data comprises 264 images, while the test data 

consists of 68 images. 

4.2. Feature extraction 

Human skin texture is a complex 3D 

structure that varies between different organs 

and can exhibit multiple textures within the 

same organ. Additionally, factors such as age, 

gender, health, and life circumstances contribute 

to significant differences in skin texture. This 

diversity complicates the task of identifying 

common features across families. One recent 

method for extracting subtle skin textural 

features that are not perceptible to the human 

eye involves the use of deep convolutional 

neural networks (DCNN) [40, 43]. CNN was 

used to detect and classify skin lesions, 

demonstrating superior performance compared 

to feature extraction methods [44]. The 

proposed work adopted the DTL technique for 

this purpose. DTL employs a CNN model pre-

trained on extensive data and adapts it for 

feature extraction from a different data type, 

leveraging insights gained from the pretraining. 

This method effectively addresses the challenge 

of limited data size. Investigations and 

experimental works were conducted to find 

some suitable models for the skin image data 

and led to the selection of two models, that are 

the VGG16 and the EfficientNetB0 [16, 18, 45, 

46] The DTL models were reconfigured by 

removing the fully connected or the prediction 

layers at the top, where the output of the last 

layers are the extracted features from the input 

image. The EfficientNetB0 model extracts 1024 

features, while VGG16 produces 512 features. 

In contrast to traditional transfer learning, which 

involves fine-tuning select layers, this study 

Figure 4. The block diagram of the proposed system. 
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initially froze pretrained weights to mitigate 

overfitting caused by the limited dataset size. 

Subsequent experiments exploring the effects of 

fine-tuning revealed significant performance 

enhancements for VGG16. 

4.3. The classifier 

The extracted features should be classified 

into one of the fifteen categories of this research. 

The classifier included a global average pooling 

layer followed by two fully connected layers, 

Dense-2 and Dense-3, which transform the 2D 

feature matrix into a vector of estimates. Dense-

2 integrates features from the pre-trained model 

to generate decisions, while Dense-3 serves as 

the classification layer, determining the 

probable distribution across the 15 dataset 

families using SoftMax activation. The added 

dense-2 layer for the VGG16 model accepts 512 

features, while that added to the EfficientNetB0 

model comprises 1024 input features, and the 

dense-3 layers for both models have the same 

number of predictions. As a result, the deep 

CNN model that served as the feature extractor 

and the three compensated layers that served as 

the classifier made up the entire classifier 

architecture. 

4.4. Training and Testing 

During the training phase, the pre-learned 

feature extractor settings were retained to 

leverage prior knowledge. The classifier stage is 

the only stage that should be trained, and it can 

be trained faster due to its shallow depth.  Two 

training methods were employed. The first 

method used the original training data without 

modifications, while the second incorporated 

data augmentation. Throughout training, data 

augmentation was dynamically applied, 

generating a new version of each image with 

random transformations every time it was fed 

into the model. The transformations included 

random rotations between +40 and -40 degrees, 

shifts in width and height up to 20%, shear 

Figure 5. The workflow diagram of the proposed methodology. 
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transformations up to 20 degrees, and random 

zooming between 80% and 120%. For each 

epoch, the augmented images match the number 

of training images, totaling 264. Over 100 

epochs, this results in 26,400 images. 

Augmentation was exclusively applied to the 

training images. The training batch size was set 

to 32, and the validation batch size to 16, to 

appropriately match the sizes of the training and 

validation datasets.  

We also explored fine-tuning both VGG16 

and EfficientNetB0 by leveraging their pre-

trained weights as initial parameters. A subset of 

their upper layers was unfrozen and trained 

alongside the added classification layers, 

enabling the models to adapt their learned 

features to our palm skin texture dataset. To 

retain the pre-trained knowledge, a lower 

learning rate was applied to the fine-tuned 

layers. Similar to the fixed feature extraction 

approach, training was performed both with and 

without data augmentation, resulting in eight 

distinct experimental configurations 

4.5. Metrics for evaluation 

  Accuracy, precision, recall, F1-score, 

training curves, and confusion matrices were 

used here to demonstrate and discuss the results. 

Accuracy is the ratio of correct predictions to all 

the predictions, as shown in the equation (1). 

Precision can be defined as the true positives to 

the total correct predictions, as depicted in the 

equation (2). Recall is calculated as the ratio of 

true positives to the total number of samples in 

the class, as shown in the equation (3). The F1-

score metric measures the weighted average of 

recall and precision, as demonstrated in the 

equation (4). The training and validation curves 

sketch the accuracy and the loss for each case 

across training epochs. The confusion matrix 

presents a color-coded, chessboard-style square 

table that compares predicted classes to true 

classes for the test data. The diagonal cells 

starting from the top-left represent the true 

positive predictions for each class. 

 

5. Results and discussion 

The results of the experiments utilizing the 

two adopted DTL models are demonstrated and 

discussed here. 

5.1. VGG16 Experiments 

The proposed classifier utilized the pre-

trained VGG16 model to extract features from 

skin images and was trained on two versions of 

the dataset: one with augmentation and one 

without. Validation accuracy reached 85% 

without data augmentation and 79% with 

augmentation. Figure 6 illustrates the training 

and validation curves. Figure 7 depicts the 

confusion matrices for both scenarios. Given 

that this was the initial step in this line of 

research, the results appear to be satisfactory. 

However, the results indicated that the original 

VGG16 model architecture may not be well-

suited for skin texture images. Further 

investigations are necessary to draw a definitive 

conclusion.  

5.2. EfficientNetB0 

After experimenting with the VGG16 model, 

the pre-trained EfficientNetB0 model was 

selected. It's newer, features an optimized 

architecture, operates faster, and is used for 

similar image types [16, 18]. Training on the 

same dataset resulted in a validation accuracy of 

94% without data augmentation and 96% with 

data augmentation. Figure 8 and Figure 9 

demonstrate the training-validation curves, and 

the confusion matrices, respectively, for the two 

cases.  

EfficientNetB0 performed better than VGG16 

because it uses a compound scaling method and 

is better at identifying small details in skin 

texture. 

Accuracy =
TP + TN

TP + TN + FP + FN
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 .  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

Where: TP = True Positives, TN = True Negatives, 

FP = False Positives, and FN = False Negatives. 
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Fine-tuning VGG16 resulted in improved 

validation accuracy and F1-score, increasing 

from 85% to 90% in both metrics when 

combined with data augmentation. However, 

the performance remained below that of the 

EfficientNetB0 model, which achieved 96% 

accuracy and F1-score without fine-tuning. 

In contrast, EfficientNetB0 showed no 

measurable gains from augmentation during 

fine-tuning, maintaining a steady validation 

accuracy of 74%. Furthermore, VGG16 

exhibited greater sensitivity to regularization 

and data augmentation, while EfficientNetB0 

maintained more consistent generalization 

capabilities.  

VGG16 exhibits superior and more reliable 

generalization performance on this dataset, 

although it necessitates greater computational 

resources. In contrast, the pre-trained 

EfficientNetB0 offers an efficient approach to 

extracting skin texture features when employed 

without fine-tuning. Misclassifications between 

the FF/FI and FL/FM families, as observed in 

the confusion matrices, likely stemmed from 

inconsistent lighting conditions, a limited 

number of FI samples, and age-related 

variations combined with artefacts present in 

FL/FM images. The shared skin characteristics 

across these families highlight the necessity for 

a larger and more diverse dataset. To improve 

the proposed method's performance, consider 

expanding the dataset, ensuring data balance, 

and optimizing the model architecture, and 

exploring alternative models for DTL. Table 2 

details the evaluation metrics obtained across 

the four scenarios, contrasting the results 

achieved with and without fine-tuning in each 

instance. All metrics were calculated using the 

macro average according to equation (5), which 

are non-weighted values.  

Macro Average Metric = 
∑ Metric(i)N

i=1

N
 (5) 

Figure 6. Training accuracy and loss curves using VGG16 with no data augmentation (a), and with data 

augmentation (b). 

Figure 7. Confusion matrices for the validation phase using VGG16 with no data augmentation (a), and with data 

augmentation (b). 
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5.3. Some results for kinship verification using 

computer vision  
In the absence of prior comparable studies, this 

research highlights the superior accuracy 

achieved using computer vision techniques. 

Comparative analyses of related prior studies 

are presented in Table 3 and Table 4. Table 3 

provides a comparison with VKV using facial 

images, outlining the dataset, methodology, and 

peak accuracy attained. Table 4 broadens the 

comparison to encompass various modalities. 

The accuracy of the proposed approach is on par 

with current state-of-the-art methods. The FKV 

accuracy reached 92.4% for mother-daughter 

pairs [21], 76% for mother-daughter pairs, and 

79% for non-relatives [37]. The average 

accuracy across classes was 94.59%. Kinship 

detection accuracy based on hand geometry was 

93% [11], while lip print analysis yielded 

58.06% accuracy for parents and biological 

offspring [9].  

5.4. Discussions 

The study demonstrated the effectiveness of 

using skin texture for kinship detection. As 

illustrated in Table 3, most existing approaches 

rely on facial features for kinship classification. 

In contrast, our research takes a novel direction 

by utilising palm skin texture, an underexplored 

aspect in the realm of intrafamily classification. 

While DTL techniques proved useful for feature 

extraction, the EfficientNetB0 model showed 

superior compatibility with skin texture images 

compared to VGG16. Data augmentation 

enhanced performance, particularly with the 

EfficientNetB0 model, unlike VGG16. This 

difference could be attributed to the alterations 

in skin texture caused by some of the 

augmentation methods used, which may disrupt 

the palm skin feature extraction process in 

VGG16. Additionally, DTL techniques 

effectively addressed the issue of limited data 

size. Data augmentation's impact on model 

Figure 9. Confusion matrices for the validation phase using EfficientNetB0 with no data augmentation (a), and with 

data augmentation (b). 

Figure 8. Training accuracy and loss curves using EfficientNetB0 with no data augmentation (a), and with data 

augmentation (b). 
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performance revealed intriguing, model-

specific behaviour. For VGG16, used as a fixed 

feature extractor, data augmentation 

surprisingly resulted in a drop in validation 

accuracy, decreasing from 85% to 79%. This 

unexpected outcome likely stems from 

VGG16's sensitivity to geometric distortions 

introduced by augmentation techniques such as 

rotations, shifts, shearing, and zooming. While 

these transformations aim to enhance data 

variability, they may have unintentionally 

altered subtle skin texture patterns, disrupting 

VGG16's reliance on precise spatial hierarchies. 

Fine-tuning the VGG16 architecture, coupled 

with data augmentation, significantly reduced 

overfitting and enhanced accuracy by 11%, 

highlighting the effectiveness of fine-tuning in 

adapting VGG16 to palm texture features. 

Conversely, applying fine-tuning to the 

EfficientNetB0 architecture led to a sharp 

decline in accuracy (from 96% to 74%), 

indicating that its pretrained weights are already 

well-optimized for capturing texture features. 

The validation accuracies achieved were 

comparable to those of other computer vision-

based kinship verification methods. 

5.5. Limitations 

This study has several limitations that 

warrant discussion and will guide future 

research directions.  

 Dataset limitation: While transfer learning 

and data augmentation techniques were 

employed, the generalizability of this study is 

limited by the relatively small dataset size. 

 Cross-validation: The absence of publicly 

available palm skin kinship datasets limits 

validation against real-world data or across 

different databases. Further investigation is 

required to ascertain the generalizability of 

the proposed method. 

 Architectural investigation: This proof-of-

concept study demonstrated the potential of 

using palm skin for kinship detection. 

However, it did not encompass 

hyperparameter optimization, layer-wise 

Table 2. Results’ summary of the proposed work scenarios. 

Model Augmentation Fine Tuning Accuracy Precision Recall F1-Score 

VGG16 
No 

No 85% 89% 85% 85% 
Yes 79% 82% 80% 80% 

Yes 
No 79% 83% 80% 79% 
Yes 90% 93% 90% 90% 

EfficientNetB0 
No 

No 96% 97% 96% 96% 
Yes 74% 76% 74% 72% 

Yes 
No 94% 96% 94% 94% 
Yes 74% 76% 74% 72% 

       

Table 3. Comparison with existing research employing facial analysis techniques. 

Study Modality Dataset Method Accuracy 

[5] Face Private 
SNN with age 

transformation 
76.4% 

[7] Face Public ResNet + DNN 60% 

[12] Face Public K-Means 94.59% 

[21] Face Private AdvKin (CNN) 95.2% 

[37] Face Public SNN 79.6% 

Present Study Palm Skin MKH EfficientNetB0 + NN 96% 

 

Table 4. Comparison with prior work across 

modalities. 

Study Modality Method Accuracy 

[9] Lip Print 
Statistical 

Analysis 
58.06% 

[11] 
Hand 

Geometry 
DTL 79.6% 

[21] Face 
AdvKin 

(CNN) 
95.2% 

Present 

Study 
Palm Skin 

EfficientNetB0 

+ NN 
96% 
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analysis, or exploration of alternative deep 

learning architectures. 

6. Conclusions 

This paper presents a novel approach to 

kinship detection based on palm skin texture. As 

a pioneering effort in this area, it requires further 

validation. Deep transfer learning techniques 

were utilized to extract features from skin 

images. A dataset was generated from the MKH 

dataset for training and testing, leveraging the 

pretrained capabilities of VGG16 and 

EfficientNetB0 models. The evaluation 

involved eight scenarios, using two deep 

learning models with two data augmentation 

conditions and two fine-tuning instances. 

EfficientNetB0 demonstrated superior 

performance compared to VGG16, achieving a 

validation accuracy of 96% versus 90%.  This 

foundational study presents encouraging initial 

results, laying the groundwork for future 

investigation. Further research directions 

include investigating additional skin areas, 

integrating data from multiple regions, and 

applying feature fusion techniques. The 

combination of handcrafted features with those 

extracted from deep convolutional neural 

networks (CNNs), as well as the evaluation of 

Siamese Neural Networks, may lead to 

improved VKV identification performance. 

Broader validation across diverse datasets and 

dataset expansion are crucial for ensuring 

generalizability. While this study focused on 

VGG16 and EfficientNetB0 architectures, 

future work may explore layer-wise analysis, 

hyperparameter optimization, deeper 

architectural insights, and the application of 

alternative deep transfer learning (DTL) models 

such as ResNet and DenseNet for feature 

extraction. 
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