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Plant diseases can cause severe damage to crops and lead to food shortages and financial 

losses for both farmers and the agricultural sector. Detecting these diseases early is 

essential for protecting crops, increasing agricultural productivity, and ensuring food 

security. This paper introduces a new intelligent edge computing framework that 

provides a cost-effective, portable, and energy-efficient solution for deep learning-based 

automated plant disease detection. Unlike cloud-dependent systems, the proposed 

framework operates independently of an internet connection, making it ideal for real-

time field deployment. It employs the NVIDIA Jetson Nano as an edge computing 

device and incorporates an Android-based interface for user interaction. The system 

utilizes a convolutional neural network (CNN) for feature extraction, followed by a deep 

classification network to identify plant diseases. Plant images are captured by a 

smartphone and transmitted to the Jetson Nano over a local WiFi network using the 

KDE Connect application for processing. After classification, the image with the 

predicted disease category is sent back to the smartphone using FTP for user display. 

The framework was trained and evaluated on the PlantVillage dataset involving 38 

disease categories for 14 different types of healthy and diseased crop leaves, achieving 

a maximum accuracy of 99.1%. This efficient and practical system demonstrates the 

potential of edge AI in precision agriculture by enabling on-device disease diagnosis 

without relying on cloud computing infrastructure. 
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1. Introduction  

Farming is essential to every aspect of 

human life, including food production, clothing, 

medicine, antimicrobial treatments, and 

environmental sustainability. Plants are a 

fundamental food source for both humans and 

animals, and agriculture is closely linked to the 

economic structures of various nations. One of 

the factors contributing to reduced productivity 

is plant disease [1], which causes significant 

economic losses worldwide each year. For the 

past few decades, farmers have used a lot of 

herbicides and insecticides to get rid of weeds 
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and pests. If applied sparingly, they might be a 

way to increase crop productivity. However, 

excessive use negatively impacts both human 

health and the overall quality of agricultural 

land. Pesticide and herbicide overuse 

contaminates groundwater and agricultural land. 

Numerous studies show that human ailments 

like diabetes, cancer, asthma, and neurological 

and reproductive issues are on the rise [2].  

The primary factor influencing crops both 

qualitatively and quantitatively is climate 

change. Heatwaves, hailstorms, tornadoes, and 

droughts can all cause partial or complete crop 

https://djes.info/index.php/djes
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loss and may provide a suitable environment for 

pests to develop. Plant diseases are becoming a 

major threat to global food security and are 

causing a significant decrease in food output as 

human society develops [3]. Thus, early 

detection of plant diseases can significantly 

lower food losses and reduce planting expenses. 

Infected plants typically exhibit visible lesions 

or marks on their leaves, stems, flowers, or 

fruits. Generally speaking, each disease or pest 

condition has a distinct visible pattern that can 

be used to diagnose abnormalities in a unique 

way. Typically, the leaves of plants serve as the 

main source for identifying plant diseases, and 

the majority of disease symptoms may start on 

the leaves [4]. The majority of plant disease 

research relies on photographs of plant leaves 

since they are typically used to visually identify 

different plant categories [5].  

However, Artificial Intelligence (AI) and 

Deep Learning (DL) have achieved noteworthy 

development for many techniques and 

applications like medical imaging, pattern 

recognition, biometric systems, and smart 

surveillance. For instance, deep learning has 

enabled advanced classification in EEG-based 

motor imagery tasks [6], real-time respiratory 

disease detection [7], handwriting recognition 

[8], smart surveillance system [9], and biometric 

recognition systems [10].  

The old methods of plant disease image 

detection mainly depend on manually extracting 

image features [11]. These methods were mostly 

dependent on human skill and frequently 

resulted in high recognition error rates when 

dealing with diverse imaging environments. 

With the express progress in deep learning 

techniques [12], these traditional methods are 

progressively replaced by automated systems 

that have the ability to learn complex patterns 

and forms from large datasets specified for this 

purpose [13]. DL algorithms, like Convolutional 

Neural Networks (CNNs), have reformed the 

technique of detecting and analyzing plant 

diseases. These models are capable of 

automatically extracting hierarchical features 

from raw image data without manual 

intervention [14]. Integrating DL approaches 

into crop health monitoring allows farmers to 

enhance productivity in addition to reducing the 

time and resources that are needed for input 

management. 

 However, the farmers still face several 

challenges in diagnosing and managing plant 

diseases especially in remote areas and 

resource-limited environments. Traditional 

detection methods depend on expert help that 

may not always be available, or manual 

inspection by hand that is time-consuming and 

inaccurate. Additionally, many AI-based 

methods depend on cloud connectivity [15], 

which is not practical for regions with limited or 

no internet access. The high cost of advanced 

diagnostic tools limits their use by small-scale 

farmers. These challenges emphasize the need 

for a cost-effective, portable, and internet-

independent solution for low-latency disease 

detection.  

To solve these problems, this paper proposes 

a smart system for automated plant disease 

detection. The suggested approach enables fast 

and cost-effective diagnosis without internet 

dependency to make it accessible and practical 

across various agricultural environments. The 

main contributions of this study are summarized 

as follows: 

1- Proposes an edge computing framework 

using Jetson Nano for performing plant 

disease classification without the need for 

cloud connectivity. 

2- Develop a deep learning model for efficient 

feature extraction and disease classification 

for ensuring a balance between accuracy and 

computational efficiency for resource-

constrained environments. 

3- Integrate an Android-based interface for 

capturing plant images to make the system 

user-friendly and portable. 

4- Implements a simple prototype of the 

proposed system for providing a low-cost and 

standalone diagnostic tool that reduces the 

need for expensive hardware and internet 

access. 

 

2. Related Work 

The field of plant disease detection has 

increased significant attention from researchers 

in recent years with various approaches utilizing 

DL techniques. Early methods mainly depended 
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on traditional image processing and manually 

feature extraction techniques, like color, texture, 

and shape analysis [16]. However, these 

methods must be adapted to specific conditions 

which make it not suitable for most natural 

environments. To overcome these limitations, 

researchers have investigated various 

techniques, including machine learning, deep 

learning, fuzzy logic, and genetic algorithms 

[17].  

Based on the machine learning approach, R. 

Kumar et al. [18] introduced a cotton 

identification method using hybrid techniques. 

The authors evaluated several machine learning 

methods involving Support Vector Machine 

(SVM), Random Forest (RF), Decision Tree 

(DT), and Ensemble Learning (EL). The 

obtained accuracy was 94.5% on the Kaggle 

Cotton Disease. Another approach that used 

machine learning was developed by S. Ramesh 

et al. [19], where a Histogram of an Oriented 

Gradient (HOG) is used for feature extraction, 

while the Random Forest is used as the classifier 

for identifying between healthy and diseased 

crops.  

M. Rajagopal et al. [20] proposed plant 

disease recognition by integrating fuzzy C-

Means with machine learning. They used 

Legion Kernels and a parallel support vector 

machine combined with Fuzzy C-Means for 

image segmentation. The reported accuracy was 

96.1% using the PlantVillage dataset. In [21], a 

corn rust disease detection method is suggested 

based on combining fuzzy logic with deep 

convolutional network VGG16. A threshold 

segmentation followed by fuzzy rules was used 

to detect the diseased leaf area of the processed 

image. The accuracy obtained was 89% using 

the four classes of corns in the PlantVillage 

dataset. The study in [22] presented an 

automatic classification technique for medicinal 

plant leaves using Particle Swarm Optimization 

(PSO)–based fuzzy C-means (PSO-FCM) and 

Gaussian Mixture Model (GMM) for 

segmentation. Vein, shape, edge-based, and 

texture features were extracted, and 

classification was performed using a multiple 

kernel parallel SVM. 

The study in [23] introduced an automated 

apple disease detection method by integrating 

the genetic algorithm with machine learning. It 

integrates filtering techniques, correlation-

based segmentation, and genetic algorithm 

optimization with multi-class support vector 

machine (M-SVM classification. Tested on the 

PlantVillage dataset, the approach achieved 

high accuracy, highlighting the impact of 

effective preprocessing.  

Focusing on the genetic algorithm, D. 

Angayarkanni and L. Jayasimman [24] 

proposed a hybrid image recognition approach 

for early plant disease detection using CNN-

based denoising, pixel-wise classification, and 

genetic algorithm-based feature selection. This 

method obtained 97.7% accuracy on the 

PlantVillage dataset. Using deep learning, V. 

Monigari et al. [25] presented a plant disease 

prediction method by exploring various 

pretrained models like VGG18, AlexNet, 

MobileNet, and ResNet50 in addition to 

building a custom CNN from scratch. They 

found that the pretrained CNNs outperformed 

the custom model in their experiment using the 

PlantVillage dataset. Similarly, M. Belmir et al. 

[26] offered a custom deep convolutional neural 

network model for plant disease classification 

using the PlantVillage dataset, using 14 crop 

types with 38 classes. The model got 98.01% 

training accuracy and 94.33% test accuracy.  

The study in [27] suggested a lightweight 

CNN framework for automatic plant disease 

detection for enabling fast identification. The 

model was trained on 57,000 tomato leaf images 

belonging to nine classes that were captured in a 

natural setting without subtracting the 

background. It got 97.04% accuracy with an 

error ratio below 0.2, which demonstrates a high 

precision in disease detection. The study in [28] 

introduced an AI-based plant disease detection 

model using an ensemble method from VGG16, 

VGG19, ResNet101, and Inception V3, which 

got over 90% accuracy on 38 classes of the 

PlantVillage dataset. It includes an explainable 

AI method to provide interpretable visual 

explanations for further highlighting key image 

regions influencing predictions. A. Ashurov et 

al [29] presented a modified depth-wise CNN 

enhanced with squeeze-and-excitation blocks 

and optimized residual skip connections for 
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plant disease detection. The reported accuracy 

was 98.0% using the PlantVillage dataset.  

However, most of the existing studies on 

plant disease detection lack end-to-end 

hardware implementation and focus on software 

simulations. To address this challenge, the study 

in [30] implements an Arabica coffee plant 

disease detection system using CNN models and 

deploys it as a web application. MobileNetV2 

was selected for deployment due to its 

lightweight architecture, achieving 99.0% 

accuracy when tested on five classes of the 

dataset. The trained model is stored in an hdf5 

file and loaded onto a Streamlit-based web 

platform to process user-uploaded images for 

disease classification and treatment 

recommendations.  A. Ahmed and G. Reddy 

[15] developed a mobile-based plant disease 

detection system using a CNN model trained on 

the PlantVillage dataset. The application is 

implemented with Kotlin Multiplatform and 

deployed on Android to enable farmers to 

capture or upload images of infected plant 

leaves to a cloud-based server for classification. 

However, the approaches in [30, 15] require an 

Internet connection. Table 1 summarizes the 

main results of the plant disease detection 

methods mentioned above.  

After reviewing the relevant studies, it is 

clear that although many investigations 

introduce various solutions to specific 

challenges, some limitations still remain, 

particularly in remote agricultural areas, leaving 

significant gaps that remain unaddressed. The 

main challenges tackled by the proposed work 

include low power consumption and portability, 

both of which are essential for real-world 

applications.

 
Table 1: Summary of literature on plant disease detection  

Study Approach Algorithms and 

techniques 

Dataset Target 

crops 

Reported 

accuracy (%)  

Hardware 

application 

 [18] Machine learning SVM, RF, DT, 

and EL 

Kaggle Cotton 

Disease 

Cotton 94.5 N/A 

 [19] Machine learning HOG and RF Author-created Papaya  Max 70.1 N/A 

 [20] Machine learning and 

fuzzy C-Means 

SVM and Legion 

Kernels 

PlantVillage Apple 96.1 N/A 

 [21] Deep learning and fuzzy 

logic  

Threshold 

segmentation  and 

VGG16 

PlantVillage Corns 89.0 N/A 

 [22]  Machine learning, PSO, 

and fuzzy C-Means 

GMM and SVM PlantVillage Tomato 85.5 N/A 

 [23] Machine learning  and 

genetic algorithm  

SVM, filtering, 

and segmentation 

techniques 

PlantVillage Apple Max 97.2 N/A 

 [24] Deep learning, Machine 

learning, and genetic 

algorithm 

CNN, SVM, and 

pixel-wise 

classification 

PlantVillage Potato 

and 

tomato 

97.7 N/A 

 [25] Deep learning Various CNNs PlantVillage Diverse Max 98.2 N/A 

 [26] Deep learning Custom CNN PlantVillage Diverse 94.3 N/A 

 [27] Deep learning Custom CNN PlantVillage Tomato 97.0 N/A 

 [28] Deep learning and 

explainable AI 

Various CNNs PlantVillage Diverse 92.3 N/A 

 [29] Deep learning Custom CNN PlantVillage Diverse 98.0 N/A 

 [30] Deep learning  MobileNetV2 Arabica coffee leaf 

disease 

Coffee 99.0 Smartphone and 

web-based 

application 

 [15] Deep learning Custom CNN PlantVillage Diverse 94.0 Smartphone and 

cloud server 
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3. Methodology 

      This section describes the proposed 

approach for detecting plant disease in the 

leaves of crops including dataset description, 

proposed deep learning model, and system 

design. 

 

3.1 Dataset Description 

      The PlantVillage dataset [31] is a widely 

used benchmark for plant disease detection that 

provides a diverse collection of images of 

healthy and diseased leaves across various crop 

species. It consists of approximately 54,303 

images categorized into 38 classes that belong 

to different plant species and disease conditions 

as presented in Table 2. The dataset contains 

crops like tomatoes, potatoes, apples, and more, 

with specific diseases such as bacterial spot, 

early blight, and late blight. The images in this 

dataset are in RGB format and vary in 

resolution, but they can be resized (e.g., 

224×224) for compatibility issues with deep 

learning models. This dataset is considered a 

valuable resource to train the machine learning 

models for classifying plant diseases and 

enabling automated disease diagnosis in 

agricultural field. Figure 1 shows different types 

of diseased and healthy plant leaves from this 

dataset. The dataset is publicly available at the 

following link. 
https://data.mendeley.com/datasets/tywbtsjrjv/1. 

 

     The PlantVillage dataset is selected in this 

study due to its comprehensiveness, quality, and 

wide acceptance in the plant disease detection 

research community. This dataset covers various 

crop species and disease types, which makes it a 

valuable benchmark for training and evaluating 

deep learning models in a controlled setting. The 

large number of labeled images ensures that the 

model can learn different visual patterns 

effectively. Additionally, the consistency of image 

quality helps the model obtain high accuracy. 

 

Figure 1. Different samples of the PlantVillage dataset 

 

 

 

 

 

https://data.mendeley.com/datasets/tywbtsjrjv/1
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Table 2:   Number of images per disease and crop category in the PlanetVillage dataset 

 

Class No. of 

images 

Class No. of 

images 

Apple Apple scab 630 Pepper bell healthy 1478 

Apple Black rot 621 Potato Early blight 1000 

Apple Cedar apple rust 275 Potato healthy 152 

Apple healthy 1645 Potato Late blight 1000 

Blueberry healthy 1502 Raspberry healthy 371 

Cherry healthy 850 Soybean healthy 5090 

Cherry Powdery mildew 1034 Squash Powdery mildew 1835 

Corn Cercospora leaf spot Gray leaf spot 513 Strawberry healthy 456 

Corn Common rust 1192 Strawberry Leaf scorch 909 

Corn healthy 1162 Tomato Bacterial spot 2130 

Corn Northern Leaf Blight 985 Tomato Early blight 1000 

Grape Black rot 1180 Tomato healthy 1591 

Grape Esca (Black Measles) 1383 Tomato Late blight 1909 

Grape healthy 423 Tomato Leaf Mold 952 

Grape Leaf blight (Isariopsis Leaf Spot) 1076 Tomato Septoria leaf spot 1771 

Orange Haunglongbing (Citrus greening) 4507 Tomato Spider mites Two-spotted spider mite 1676 

Peach Bacterial spot 1797 Tomato Target Spot 1404 

Peach healthy 360 Tomato Tomato mosaic virus 373 

Pepper bell Bacterial spot 997 Tomato Tomato Yellow Leaf Curl Virus 5357 

 

 
 

3.2 Proposed Deep Learning Model       

       The aim of the suggested DL method is to 

effectively detect leaf diseases in plants based 

on integrating a feature extraction unit with a 

classification network. This approach employs a 

pretrained CNN to extract important features 

from plant leaf images in addition to effective 

classification for low-latency applications on 

resource-constrained devices. The pipeline of 

the proposed model involves data 

preprocessing, data splitting, feature extraction, 

classification, and final prediction.  The process 

starts with a dataset containing images of plant 

leaves for different diseases or plants remaining 

in a healthy form. Before training, these images 

go through a preprocessing stage involving 

resizing and normalization. After preprocessing, 

the dataset is split into two subsets: 80% is 

allocated for training, and the remaining data 

20% is used for testing to evaluate the 

generalization ability of the presented model on 

unseen data. Feature extraction is implemented 

using a pretrained CNN due to its effectivity in 

image recognition field. Several CNN 

architectures including AlexNet, GoogleNet, 

and DenseNet, are investigated for this task. The 

architecture of these models is adapted by 

replacing its original 1000-class classification 

layer with a 2D global average pooling layer for 

reducing the spatial dimensions and obtaining 

1D image feature vectors that represent the most 

important information of the input images. 

     Then, the extracted features are passed 

through a classification network, which consists 

of two fully connected layers with ReLU 

activation function. A dropout layer is placed 

between these layers for preventing overfitting 

and ensure better generalization through 

different plant species and disease types. The 

final output layer consists of a softmax function 

for assigning probability scores to each class in 

the dataset and obtaining the predicted label for 

the input leaf image. After training and 

evaluating the model, it can be deployed for 

plant disease classification for allowing precise 

analysis in agricultural applications. Figure 2 

presents an overview of the proposed deep-

learning framework.  
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Figure 2. Workflow of the proposed deep learning framework for plant disease detection 

 

3.3 System Design 

     The proposed plant disease detection system 

is designed for efficient and low-latency 

classification of plant leaf diseases using an 

embedded AI approach. The system consists of 

three main components: Jetson Nano as the 

processing unit, an Android smartphone as the 

user interface, and a wireless access point for 

WiFi communication between the devices as 

shown in Figure 3. The smartphone captures 

images of plant leaves and transmits them to the 

Jetson Nano via KDE Connect software (stands 

for K Desktop Environment), which enables 

seamless wireless communication between 

Android and other operating systems without 

requiring Internet connectivity. This tool allows 

secure file transfer over a local network. In this 

system, the KDE application is configured on 

both the Android device and the Jetson Nano 

(running a Linux-based OS) to enable automatic 

and encrypted file sharing via its TCP/IP over 

the WiFi channel. Once the user selects or 

captures an image on the phone, it is shared 

directly to a designated directory on the Jetson 

Nano through KDE Connect’s “Send File” 

feature. At the core of the detection system is a 

deep neural model, designed for efficient 

execution on the Jetson Nano. The received 

image undergoes preprocessing, including 

resizing and normalization, before being passed 

through the deep learning model for disease 

classification. The model predicts the disease 

category, and the predicted label is texted on the 

image to provide a visual diagnosis. For result 

transmission, an FTP (File Transfer Protocol) 

server running on Jetson Nano facilitates the 

transfer of the processed image back to the 

smartphone. Finally, the image is displayed to 

the user for providing an intuitive interface for 

real-time plant disease assessment. After 

inference, the annotated image (with prediction) 

is saved to the shared FTP directory, which the 

smartphone accesses using a standard FTP client 

to retrieve the result. This approach ensures fast 

and direct communication over the local 

network. 

Figure 4 shows the hardware components of the 

proposed system involving a Jetson Nano, a 5V 

battery, a wireless access point, and a 

smartphone. This hardware setup ensures an 

efficient and portable plant disease detection 

system, capable of operating in both indoor and 

outdoor agricultural environments with minimal 

power consumption and reliable wireless 

connectivity. 
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Figure 3. Architecture of the proposed system for Plant disease detection  

 

 

 
 

Figure 4. Hardware components of the proposed system 
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The overall process is described in Algorithm 1, 

which outlines the steps for capturing, 

processing, and classifying plant disease 

images. 

______________________________________ 

Algorithm 1: WiFi-based plant disease detection 

Input: Image captured from an Android phone 

Output: The image with the prediction result 

Step 1: Capture an image using the camera of 

the Android phone. 

Step 2: Send the captured image to Jetson Nano 

using KDE Connect. 

Step 3: Store the received image temporarily on 

the Jetson Nano. 

Step 4: Preprocess the received image by 

resizing and normalizing it. 

Step 5: Feed preprocessed image to the deep 

learning model for inference. 

Step 6: Overlay the predicted disease label on 

the image. 

Step 7: Establish an FTP connection between 

Jetson Nano and the phone. 

Step 8: Transfer the processed image to a 

designated folder on the phone. 

Step 9: Repeat the process for the next incoming 

image. 

 

4. Results and Discussion  

    This section presents the performance 

evaluation of the proposed plant disease 

detection system by analyzing the effectiveness 

of the deep learning model and the overall 

system efficiency. The results are assessed 

based on various evaluation metrics including 

classification accuracy, precision, recall, F1 

score, model parameters, memory usage, and 

inference time. The proposed model is trained 

using the standard version of the PlantVillage 

dataset, which includes all 38 categories, and 

tested on unseen images. The model is 

implemented using the PyTorch deep learning 

framework and trained on a laptop with an 

NVIDIA RTX 3060 GPU, Core i7 processor, 

and 16 GB RAM. The final trained model is 

deployed on the NVIDIA Jetson Nano, which 

includes a 4 GB LPDDR4 RAM, 128-core 

Maxwell GPU, and Quad-core ARM Cortex-

A57 CPU. This device works with 5 volts, so it 

can be considered an energy-efficient edge 

solution and a power-saving option in this field. 

      To choose the best model that is more 

compatible with the Jetson Nano based on its 

computing power, different CNNs involving 

GoogleNet, VGG19, ResNet18, ResNet101, 

AlexNet, DenseNet121, and DenseNet169 are 

evaluated in terms of accuracy and 

computational cost as reported in Table 3 and 

Table 4, respectively. Figure 5 shows the 

training/testing loss and accuracy across 100 

epochs utilizing the DenseNet169 model. The 

hyperparameters that are used for model training 

after tuning are presented in Table 5.  

 
Table 3: Accuracy analysis of proposed method (best 

results in bold). 

Model F1 Precision Recall Accuracy  

GoogleNet 9610 9653 9579 97.01 

VGG19 96.34 96.87 95.97 97.19 

AlexNet 9698 9737 9663 97.61 

ResNet18 9692 9711 9675 97.94 

ResNet101 9805 9823 9791 98.80 

DenseNet121 9833 9843 9824 98.88 

DenseNet169 9882 9894 9872 99.11 

 

 
Table 4: Computational cost analysis of proposed 

method (best results in bold). 
Model Para. 

(M) 

Memory 

usage 

(MB) 

Inference 

speed on 

Jetson 

Nano (ms) 

Training 

time using 

RTX 3060 

(minutes) 

GoogleNet 6.1 833.0 86 4.1 

VGG19 20.3 955.3 228 6.5 

AlexNet 2.6 818.3 46 3.4 

ResNet18 11.4 892.1 69 3.8 

ResNet101 43.5 954.9 252 7.0 

DenseNet121 7.4 845.3 152 5.4 

DenseNet169 13.3 889.1 198 6.1 
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Table 5: Hyperparameters configuration for model 

training 

Hyperparameter Configuration 

Learning rate 0.0001 

Batch size 64 

Number of epochs 100 

Dropout ratio 0.5 

Size of hidden layers  512 

Activation function ReLU 

Optimizer Adam 

 

 
Figure 5. Training and testing performance: Accuracy 

and loss over epochs 

 

       The results in Tables 3 and 4 emphasize the 

effectiveness of AlexNet and DenseNet169 for 

plant disease detection. The lightweight nature 

of AlexNet allowed fast inference on the Jetson 

Nano by providing an excellent balance between 

efficiency and accuracy, with only 2.6M 

parameters, 818.3 MB memory usage, and a fast 

46 ms inference speed, obtaining 97.61% 

accuracy. This makes it ideal for real-time 

applications on resource-limited devices. On the 

other hand, DenseNet169 slightly heavier 

(13.3M parameters, 889.1 MB memory usage), 

achieves the highest accuracy (99.11%). 

However, its 198 ms inference speed is slower, 

which makes it better suited for precision-

focused tasks where slight delays are 

acceptable. According to Tables 3 and 4, this 

study offers multiple options to provide the 

desired trade-off between accuracy and 

inference speed for supporting various 

deployment priorities and aligning with the 

system’s goal of offering a cost-effective, 

portable, and energy-efficient edge solution. 

Moreover, Table 6 presents a performance 

comparison of the proposed approach with 

existing methods for plant disease classification. 

The results for other methods (Table 6) are 

obtained directly from their original 

publications, as reported by the respective 

authors. This Table proves the effectiveness of 

the proposed approach in enhancing 

classification performance compared with other 

existing methods under similar experimental 

conditions. 
 

Table 6: Performance comparison with existing studies 

using the PlantVillage dataset 

 

Study Year Number 

of 

classes 

Accuracy 

            [21] 2021 4 89.0 

[15] 2021 38 94.0 

[25] 2021 38 98.2 

[26] 2023 38 94.3 

[27] 2023 9 97.0 

[24] 2023 subset 97.7 

[28] 2024 38 92.3 

[20] 2024 38 96.1 

[29] 2025 38 98.0 

Proposed 

(AlexNet) 

2025 38 97.6 

Proposed 

(DenseNet169) 

2025 38 99.1 

 

5. Limitations and Future Work 

         Although the proposed plant disease 

detection system reaches a high classification 

accuracy of 99.1% on the PlantVillage dataset, 

several limitations must be recognized to 

enhance the real-world applicability. 

First, the proposed model is trained and 

evaluated using images taken under controlled 

settings like uniform lighting and backgrounds. 

This issue can limit the robustness of the system 

when applied in real agricultural environments, 

where the captured images may be affected by 

variable lighting, shadows, and weather 

conditions. To address this matter, future work 

will combine image augmentation techniques 
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for the training data for simulating 

environmental variations and integrate 

preprocessing methods like histogram 

equalization and brightness normalization to 

improve adaptability in a variant environment. 

Second, the performance of the proposed system 

can be reduced when faced with new plant 

species or disease types that are not included in 

the original dataset. The generalization 

capability is restricted by the utilized dataset, 

which handles only 14 crop species and 38 

disease categories. Future improvements will 

explore open-set recognition methods and 

recurrent learning strategies to enable the 

system to identify and adapt to unknown plant 

diseases. 

Third, although the system is adjusted for 

portable and real-time use on the Jetson Nano 

device, the scalability for broader agricultural 

applications requires further investigation. The 

framework should be retrained and validated on 

diverse datasets for covering other crop types, 

environments, and regions. This can be done by 

merging several datasets into a single and larger 

dataset. Furthermore, incorporation with 

additional sensors such as soil moisture or 

temperature monitors can enable multimodal 

analysis for more accurate diagnostics. 

Lastly, to ensure long-term usability and 

efficiency, future research should explore ways 

for improving model performance such as 

integrating feedback mechanisms to include 

user input and expert corrections. Additionally, 

optimizing the system for Jetson Nano through 

model pruning to reduce computational cost and 

allow the use of a deeper neural network. 

6. Conclusions  

     This paper presents an efficient, low-cost 

edge computing framework for plant disease 

detection utilizing the NVIDIA Jetson Nano and 

an Android-based interface for operation 

without internet dependency. The system 

achieves a high classification accuracy of 99.1% 

on the PlantVillage dataset and provides a 

portable, user-friendly diagnostic tool for 

farmers in remote areas. This framework 

demonstrates the potential of edge AI in 

precision agriculture for offering timely disease 

detection to enhance crop protection and food 

security.  
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