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The primary factor influencing road performance is pavement deterioration. Pavement 

cracking, a prevalent form of road deterioration, is a significant challenge in road 

maintenance. This paper proposes a method utilizing deep convolutional neural network 

models for precise crack detection, segmentation, and geometric parameter calculation 

in pavement crack identification. The system operates through three primary stages:  

Commencement, crack identification employs YOLOv10, a rapid and efficient object 

detection model. Secondly, crack segmentation employs a modified Unet 3+ variant 

known as Residual-Attention UNet 3+, which effectively distinguishes crack pixels 

from the background by utilizing attention mechanisms and residual connections to 

enhance accuracy. Finally, crack quantification, wherein the system computes the 

crack's geometric parameters, including width, length, angle, and orientation. We 

assessed performance using two datasets: SUT-Crack, a publicly accessible dataset, and 

IRD-Crack, a new real-world dataset compiled by the authors from roads in Diyala, Iraq, 

with diverse lighting conditions and surface complexities. The suggested technique 

attained an accuracy of 98.96% on the SUT-Crack dataset. It showed superior 

performance on the IRD-Crack dataset under actual situations, therefore validating its 

efficacy and generalization capability. This method offers a pragmatic and 

computationally efficient instrument for monitoring pavement cracks and can facilitate 

road repair choices. 
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1. Introduction  

Pavement deterioration is the primary 

element influencing road performance. The 

prompt and precise identification of pavement 

deterioration is essential for pavement upkeep. 

Cracks are the primary indication of multiple 

forms of pavement deterioration. Pavement 

cracks would adversely impact both the 

aesthetic quality and driving comfort while also 

potentially escalating to induce structural 

damage and diminish the overall service 

performance and lifespan of the pavement [1]. 
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Therefore, early detection of pavement cracks is 

crucial for preventing pavement degradation, 

safeguarding the underlying foundation layers, 

minimizing maintenance efforts and expenses, 

and ensuring safety for all road users. 

Early pavement identification and repair 

usually depend on manual detection, which is 

time-consuming and laborious, has weak 

detection accuracy, and has some associated 

dangers [2]. From crack classification, it is 

revealed that they exhibit diverse shapes, 

extensive coverage areas, varying extension 

lengths, and irregular widths.  
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In recent years, the fast development of 

computer technology and Artificial intelligence 

(AI) has led to its integration across numerous 

fields. In recent years, it has become extensively 

utilized for road crack identification, resulting in 

numerous automated detection techniques. 

Traditional automatic detection techniques 

encompass the Canny algorithm, which relies on 

threshold segmentation [3], and the Otsu 

approach [4]. Nevertheless, owing to the 

intricate characteristics of the road surface and 

pavement environment, along with the general 

applicability and robustness of the traditional 

Canny and Otsu algorithms, the accuracy of the 

detection findings is suboptimal. Subsequently, 

the minimal cost path search algorithm [4], the 

support vector machine (SVM) detection 

algorithm [5], the Crack Tree detection 

technique, and others emerged. These 

techniques have solved low Precision, however, 

detecting Precision still takes a long time. 

Additionally, the complex architecture of 

detection and Crack Tree techniques using SVM 

prevents their practical application. Based on 

these difficulties and the prevalent machine 

learning technology [6], a deep learning and 

neural network-based automatic crack 

identification and detection technique is 

developed. Crack detection data can also 

monitor pavement conditions and determine 

road maintenance strategies. Thus, pavement 

crack identification would considerably impact 

road monitoring and maintenance automation, 

thus its precision and speed must be improved. 

Currently, the direction of Road pavement 

crack recognition research is separated into two 

sections. The digital image processing method 

uses artificial feature identification, including 

frequency, edge, HOG, gray level, texture, and 

entropy, to construct feature recognition 

conditions for limited and total recognition. The 

second type uses deep learning to create a 

Convolutional Neural Network (CNN) for 

automatic feature recognition. The network 

adjusts to meet or exceed label accuracy by 

following specific rules. This paper establishes 

a deep learning-based convolutional network to 

detect pavement cracks automatically. 

Considering the aforementioned issues in 

pavement crack detection, this paper proposes a 

method for pavement crack identification 

utilizing a deep convolutional neural network 

fusion model, which effectively identifies 

cracks and ensures recognition accuracy 

through the YOLOv10 model. A detected crack 

can be segmented using Residual-Attention 

UNet 3+, and the resulting binary image can be 

utilized to compute the geometry characteristics 

of the crack. Consequently, the suggested model 

holds substantial importance for intelligent 

pavement detection and can concurrently 

perform detection and segmentation, thereby 

markedly enhancing model efficiency. 

The main contributions to the suggested model 

include the following: 

 

1. The suggested system employs YOLOv10 

for object detection because it effectively 

resolves a significant obstacle in 

organizational development: balancing 

accuracy and computational efficiency 

compared to earlier versions. 

2. This study presents a novel technique for 

image segmentation. We introduced 

Residual-Attention UNet 3+, a composite 

neural network that amalgamates the 

advantages of UNet 3+, residual units, and 

attention mechanisms for the segmentation 

of crack images. This technique has 

improved predicted accuracy relative to 

earlier methods, hence differentiating our 

approach from prior methodologies. This 

results in attaining a high level of precision 

in the identification of pavement cracks. 

3. Utilizing another dataset by capturing 

pavement crack images of local roads to test 

the proposed system in order to reflect its 

applicability and generalization in the real 

environment. 

This paper is organized into the following 

sections: Section 2 presents the related research, 

Section 3 outlines our methodology, and Section 

4 details the experiments and analysis. In 

conclusion, Section 5 encapsulates the entirety 

of the work.  
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2. Related works 

In recent years, the automated identification 

of pavement cracks has garnered heightened 

interest. Authors and maintenance specialists 

are exploring diverse strategies and 

methodologies to improve maintenance 

dependability and efficacy. This section 

summarizes the literature in this field. Li et al. 

presented an interesting form of the road crack 

detection model called RDD-YOLO [7]. The 

model combined a simple attention mechanism 

(SimAM) to the backbone network to bring 

attention to significant details in the input 

image. By using GhostConv instead of 

traditional convolution modules, the neck 

structure is enhanced. As a result, the task of 

damage recognition will execute more 

lightweight and effective because there is less 

redundant data, fewer parameters, and less 

computing complexity. Lastly, the upsampling 

algorithm in the neck is improved by replacing 

the nearest interpolation with more accurate 

bilinear interpolation. This finer interpolation 

method more successfully restores the image's 

delicate details and improves the accuracy of the 

detection results. The proposed model achieves 

an mAP50 and mAP50-95 of 62.5% and 36.4% 

on the validation set respectively on the 

RDD2022 dataset. This study is constrained by 

its dependence on a singular dataset 

(RDD2022), perhaps limiting its applicability to 

diverse pavement or lighting situations. Deng et 

al. suggested an integrated framework for 

automatic detection, segmentation, and 

measurement of road surface [8]. In the 

proposed framework, three different computer 

vision algorithms are effectively combined: 

First, to identify cracks, the real-time object 

detection algorithm YOLOv5 is employed, it 

achieves a mean average precision (mAP) of 

91%. Secondly, a modified ResNet is created by 

adding an attention gate module to increase 

accuracy of cracks segmentation at the pixel 

level which achieves 87% intersection over 

union (IoU) on crack pixels segmentation. 

Lastly, an innovative surface feature 

quantification method is created to measure both 

the width and length of segmental road cracks, 

achieving a 95% identification accuracy. 

However, the framework presupposes optimal 

conditions and fails to include real-world 

environmental fluctuations, such as shadows, 

debris, or illumination discrepancies.  Shu et al. 

presented a pavement crack detection model that 

utilizes the YOLOv5 target detection network 

with the street view image data source [9], 

which is a cost-effective method.  With a mAP 

of more over 70%. However, the model has 

difficulties in identifying small or hairline 

fractures due to the constrained resolution and 

noise inherent in street view data. An et al. 

suggested a system called the Crack 

Identification Network (CIN) [10] for 

identifying and calculating the size of concrete 

surface cracks by integrating deep learning 

convolutional neural networks, clustering 

segmentation and morphological techniques. 

The accuracy rate achieves 99%, although the 

approach demonstrates great accuracy, its 

computational complexity and absence of real-

time performance may impede its 

implementation in practical settings. Zhang Z. et 

al.  introduced the ResUnet, a semantic 

segmentation neural network, which gathers the 

strength of residual learning and U-Net from 

high-resolution remote sensing images [11]. 

The first benefit of this model is that residual 

units facilitate deep network training.  Second, 

information might spread more easily due to the 

network's rich skip connections, making it 

possible to build networks with fewer 

parameters but better performance. The 

suggested method's break-even points which 

defined as the point on the relaxed precision-

recall curve, was 0.9187. Nonetheless, it is 

computationally demanding and inappropriate 

for implementation on low-resource devices or 

in real-time applications. Zhang Q. et al. 

introduced an improved U-net network for crack 

detection and segmentation with a complicated 

background [12]. The VGG16 and the novel 

Up_Conv module are added as the backbone 

network to increase the recognition accuracy of 

small cracks in the road surface. Moreover, U-

net's skip connection was enhanced using the Ca 

(Channel Attention) mechanism to distinguish 

between cracks and background noise. In order 

to extract richer information through more 

convolutional layers in the network, the 
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DG_Conv (Depthwise GSConv Convolution) 

and UnetUp (Unet Upsampling) modules are 

introduced in the decoding stage.  The suggested 

system's results show a precision of up to 87.4%. 

However, the model's efficacy is contingent 

upon hyperparameter configurations, and the 

research is deficient in detail on its resilience 

under diverse environmental circumstances. He 

and Lau put out an interesting model called 

CrackHAM.  This encoder-decoder network is 

based on the U-Net design and incorporates a 

novel model network called the HASP module 

to address the problem of deteriorating spatial 

data [13]. Additionally, the channel attention 

and spatial attention modules were used to 

capture abundant contextual information for 

high-level features and extract rich edge 

information for low-level features respectively. 

Through downsampling, the Multi-Fusion U-

Net architecture is suggested as a way to 

aggregate contextual information from feature 

maps of different sizes.  The accuracy of the 

system is 86.41%. Nonetheless, the model's 

attention methods introduce a considerable 

computational burden, rendering it less 

appropriate for real-time crack investigation. 

Zhang et al. employ an innovative technique that 

combines a Convolutional Block Attention 

Module (CBAM) with a ResNet model to 

identify multi-type cracks [14]. The suggested 

model achieves a precision of 92.9%. 

Nevertheless, the study is hindered by its 

geographically narrow dataset, which may not 

accurately reflect different road conditions 

worldwide. Table 1 illustrates a summary of 

related works. 

Table 1: Summary of related works 

Study Technique Dataset Performance Metrics 

[7] YOLOv8 and simple attention 

mechanism 
RDD2022 

mAP50:  62.5%  and 

mAP50-95: 36.4% 

[8] 

YOLOv5 and Attention ResNet 

(RDD) dataset  for training and 

validation, and Road-Crack-Images-Test 

from Hunan University 

mAP: 91% 

IoU: 87%, 

Accuracy: 95% 

[9] YOLOv5 Street view images mAP > 70% 

[10] CNN, clustering segmentation and 

morphology 
Collect 1000 crack original images. Accuracy: 99% 

[11] 
residual learning and U-Net Massachusetts roads dataset 

Precision-

recall:.91.87% 

[12] Improved U-Net and VGG16 CFD and Deepcrack Precision: 87.4% 

[13] Multi-Fusion U-Net Deepcrack, Crack500, and FIND Accuracy:86.41%. 

[14] Convolutional Block Attention 

Module and ResNet model 
Collect crack images from China streets Precision: 92.9% 

 

3. Materials and methods 

This study provides a fully automated 

procedure for the detection, segmentation, and 

measurement of asphalt pavement cracks 

located in different shapes and forms within the 

image , as illustrated in Figure 1 two 

methodologies have been used in our system: 

first, object detection using YOLOv10 which is 

a single-stage object detection method, offers 

rapid detection speed and effective 

identification of small targets. YOLOv10 

enhances both precision and efficiency via a 

synthesis of training methodologies and 

architectural developments. This method has 

been utilized in numerous engineering 

applications and is particularly effective for 

crack-detecting tasks that include stringent time 

limitations and significant safety threats. 

Consequently, the YOLOv10-based method 

[15] is initially employed to detect road crack 

areas utilizing bounding boxes. Second, 

semantic segmentation using the improved 

Residual-Attention UNet 3+ algorithm. The 

outcomes of Stage 1 are input into the improved 

Residual-Attention UNet 3+ algorithm as Stage 

2. To enhance pixel-level crack segmentation, 

we have refined the UNet 3+ model by 

developing an integrated neural network that 

combines the advantages of UNet 3+, residual 

units, and attention gates (AG) for crack image 



Shemeam T. Muhey, Sinan A. Naji/ Diyala Journal of Engineering Sciences Vol (18) No 3, 2025: 68-87 

72 

 

segmentation. In Stage 3, a novel approach for 

estimating surface cracks is introduced to 

measure the length, width, and orientation of the 

segmented cracks. The primary benefit of the 

suggested model is the substantial enhancement 

in the precision and efficacy of road crack 

segmentation among intricate backgrounds. 

Simultaneously, a novel technique for surface 

feature estimation has been devised to examine 

surface feature data, emphasizing crack 

morphology precisely [16]. The specifics of 

each phase of the planned architecture are 

explained in the subsequent subsections.  

 

Figure 1. The general architecture of system

3.1 Image pre-processing 

Image pre-processing is an essential stage in 

deep learning that increases the quantity and 

quality of dataset images required for system 

training and yields a more efficient learning 

model. cropping, flipping, rotation, 

improvement of contrast, colour-space 

transformation, noise reduction, and colour 

enhancement, are examples of pre-processing 

methods [17]. Various approaches performed to 

the SUT-Crack Datasets are shown in the 

following sections.  

3.1.1 Image scaling 

All of the images used in this study were 

resized to 640 x 640 x 3 and 320 x 320 x 3 in 

order to be compatible with the inputs utilized 

by the YOLOv10 and UNet 3+ models, 

respectively.  In addition to ensuring 

computational efficiency, image scaling 

provides the model with a standard input size. 

3.1.2 Image Augmentation 

Large datasets are typically needed during 

the training phase of deep learning with CNN-

based methodologies in order to improve the 

ability of the model to learn new image patterns 

and generate accurate predictions. The 

augmentation process improves the training 

dataset by using multiple image 

transformations.  Rotation, shifting, shearing, 

zooming, flipping, and reflecting are a few 

examples of these transformations. Through the 

production of new images from the dataset of 

asphalt cracks, overfitting is mitigated, 

undesired feature acquisition is avoided, and 

overall performance is enhanced [17,18].  The 

various transformation types and their 

associated parameters are displayed in Table 2. 
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Table 2: Dataset augmentation with different transformations. 

Transformation Type Corresponding Values 

Range of Rotation 30 degrees 

Range of Width-Shift 10% 

Range of Height-Shift 10% 

Range of Shear 10% 

Range of Zoom [70% - 100%] 

Horizontal-Flip ‘True’ 

Fill Mode Reflection 'Nearest' 

 

3.1.3 Splitting the dataset 

A common technique in machine learning, 

data mining, pattern recognition, and other 

fields is splitting the dataset into smaller sub-

datasets.  SUT-Crack datasets were split into 

three subsets for this study: 70% for training, 

20% for validation, and 10% for testing. 

comprehensive information is available in Table 

3.                                  

Table 3: Details of splitting dataset 

Training (70%) Validation (20%) Testing (10%) 

5756 1644 822 

 

3.2 YOLOv10 for crack detection  

The initial stage of the suggested model is 

crack detection (object detection) using 

YOLOv10 which is employed to identify road 

cracks in images. The purpose of object 

detection techniques is to locate and classify an 

object in image by drawing bounding box 

around object region [11,19]. Popular models 

like YOLO (You Only Look Once) [20] or 

Faster R-CNN [21] are often adapted for this 

task. These models don't detect the exact pixel 

boundaries but rather identify the crack as an 

object within the image [22]. One of the greatest 

real-time object detection algorithms is the 

YOLO (You Only Look Once) series (from v1 

to v10), a single-stage object detection 

technique developed in recent years.  It 

significantly and broadly affects several 

computer vision studies [23,24].  Numerous 

tests demonstrate that YOLOv10 is superior to 

other advanced detectors by achieving state-of-

the-art performance and latency [25], through 

fusing training techniques and architectural 

innovations YOLOv10 improves accuracy and 

efficiency. As following, we introduce some of 

the special features of YOLOv10: The road 

crack images are initially processed by the 

backbone to extract crack features, 

subsequently, feature fusion is conducted in the 

neck utilizing an Enhanced Feature Pyramid 

Network (FPN) with spatial-channel decoupling 

and Partial Self-Attention (PSA) [15].  

ultimately, the outputs consist of predicted 

values for class probability, item level, and 

bounding box location of road cracks. 

YOLOv10's architecture comprises three 

components: backbone, neck, and head. Below 

is an explanation of the basic components:  

a. The initial component is the backbone, 

primarily responsible for feature extraction 

from the input image. YOLOv10's 

backbone employs an advanced generation 

of CSPNet (Cross-Stage Partial Network) 

to boost gradient flow and minimize 

computational redundancy. CSPDarknet 

has numerous essential modules, such 

convolutional layers, batch normalization, 

activation functions, and residual blocks. A 
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vital element of CSPDarknet is the Cross 

Stage Partial (CSP) connections, which 

partition maps features into two sections 

and integrate them via a cross-stage 

hierarchy to enhance learning efficiency. 

Furthermore, spatial-channel decoupled-

down sampling is implemented to improve 

computing efficiency. Additionally, 

YOLOv10 integrates large-kernel 

convolutions and partial self-attention 

methods during the feature extraction 

phase, enhancing detection precision while 

preserving computing efficiency. The 

enhancements in the backbone architecture 

enable YOLOv10 to attain enhanced 

efficacy in object detecting tasks. 

b. The architecture's neck integrates a path 

aggregation network (PAN) module, 

optimized for efficiency, along with up 

sampling layers to improve feature map 

resolution; it comprises an FPN and a PSA 

positioned between the backbone and head 

layers. Utilizing an FPN architecture 

facilitates the transmission of substantial 

semantic attributes from the highest to the 

lowest feature maps. This design guarantees 

the accuracy of minor object details while 

enabling the abstract representation of big 

objects. The PSA architecture transmits 

precise localization data across feature 

maps of differing granularity. By 

integrating the FPN and PSA, YOLOV10 

improves efficiency through the PSA 

module and the Compact Inverted 

Bottleneck (CIB) block, facilitating 

effective multi-scale feature processing and 

attention mechanisms. Consequently, the 

neck attains adequate power for feature 

fusion. 

c. The predictive header eliminates the need 

for non-maximum suppression (NMS) used 

by previous versions; a technique used to 

eliminate duplicate predictions and select 

the most confidently selected boxes. By 

introducing a double-assignment strategy 

into its training process, it thus significantly 

reduces processing time. Finally, the 

predicted specified box is generated, and 

the object is classified and labelled. During 

post-processing, confidence criteria, 

typically established at 0.25, and 

Intersection-over-Union (IoU) thresholds, 

set at 0.45, are employed to eliminate weak 

detections.  The resulting bounding boxes 

are then transformed into image-scale 

coordinates for visual overlay and 

annotation. 

3.2 Improved Residual-Attention UNet 3+   for 

Crack Segmentation 

 We have improved UNet 3+ model by 

constructing an integrated neural network that 

combines the strengths of UNet 3+, residual 

unit, and attention gate (AG) to carry out crack 

semantic segmentation. Semantic Segmentation 

involves assigning a class label to every pixel in 

an image into a pre-defined set of categories, 

such as road, building, or vehicle. Since FCN, 

U-Net, and their variations predict one 

segmentation map based on pixel-wise 

classification, they have been extensively used 

for semantic segmentation across a variety of 

applications [26,27]. The core network 

framework used in the suggested model is UNet 

3+, which connects the encoder and decoder 

networks using deep supervision and full-scale 

skip connections [28]. Following each encoding 

step (E1 to E4), the encoder network's feature 

map was translated to the decoder network using 

dense convolution blocks and a residual block 

(Conv+Maxpooling+Dropout(0.2)). We 

inserted an attention gate between (E4-D4) to 

help the model focus on the most significant 

features and disregard the unimportant ones. It 

takes two inputs g, gate signal comes from the 

next lowest layer of the network (decoder stage), 

which has the better features and x, comes from 

skip connection at early layers (encoder stage). 

An element-wise sum is performed on the two 

vectors. Because of this process, aligned 

weights get bigger and unaligned weights get 

smaller. A ReLU activation function is applied 

to the resulting vector. The attention coefficients 

(weights) are produced by scaling this vector 

between [0,1] using a sigmoid layer; more 

relevant features are indicated by coefficients 

closer to 1. Trilinear interpolation is used to up-

sampling the attention coefficients to the x 

vector's original dimensions. The original x 

vector is scaled based on significance by 
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multiplying the attention coefficients element 

by element. The skip connection then transmits 

this as usual [29]. The general structure of 

Improved Residual-Attention UNet 3+is 

depicted in Figure 2.  

 

 

 

 

Figure 2. Enhancement of UNet 3+ Model Architecture 

3.2.1 UNet 3+ 

Which benefits full-scale skip connections 

and deep supervisions. While the deep 

supervision learns hierarchical representations 

from the full-scale aggregated feature maps, the 

full-scale skip connections combine low-level 

details with high-level semantics from feature 

maps on different scales. The main advantage of 

UNet 3+ is its ability to be efficiently trained on 

small datasets [28]. The primary architecture of 

the UNet 3+ is consists of two main parts: 

Encoder and Decoder. The encoder means a 

chain of convolutional layers that capture high-

level features. Each decoder layer in Unet 3+ 

includes both smaller- and same-scale feature 

maps from the encoder and larger-scale feature 

maps from the decoder, which capture fine-

grained features and coarse-grained semantics 

in complete sizes. The basic architecture of Unet 

3+ also contains skip connections, The basic 

idea of skipping connections is that as the 

encoder lowers the spatial resolution, which can 

cause a loss of fine details, the skip connections 

assist in maintaining spatial details by directly 

transmitting them to the decoder.  For example, 

Figure 3 shows how to extract the feature map 

of 𝑋𝐷𝑒
3 . Like the UNet, the decoder receives the 

feature map from the same-scale encoder layer 

𝑋𝐸𝑛
3 directly. Unlike to the UNet, a set of inter 

encoder-decode skip connections transfers the 

low-level detailed information from the smaller-

scale encoder layer XEn
1 ' and XEn

2  , by using non-

overlapping max pooling operation; while by 

applying bilinear interpolation a chain of intra 

decoder skip connections transfers the high-

level semantic information from larger-scale 
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decoder layer 𝑋𝐷𝑒
4 and 𝑋𝐷𝑒

5 . As a result, it will be 

formed five same resolution feature maps. To 

eliminate unnecessary information and further 

standardize the number of channels a 

convolution with 64 filters of size 3 × 3 could be 

a good option. Furthermore, a feature 

aggregation process, comprising 320 filters of 

size 3 × 3, batch normalization, and a ReLU 

activation function, has been applied on the 

concatenated feature map from five scales in 

order to smoothly combine the shallow exquisite 

information with deep semantic information 

[28]. 

 

Figure 3. Illustration of how to construct the full-scale aggregated feature map of third decoder layer 𝑋𝐷𝑒
3  in original 

Unet 3+

3.2.2 Residual Blocks or Units 

A series of stacked layers make up residual 

blocks or units, in which inputs are added back 

to their outputs in order generate identity 

mappings. In practice, identity mappings are 

implemented using what are known as skip or 

residual connections. However, there are several 

possible ways to apply these connections, 

depending on where they are inserted within the 

stacked layers that form a residual block [30]. 

According to learning theory, deeper neural 

networks should achieve lower training and test 

error, but in practice, the opposite occurs.  Once 

the error rate reaches a minimum value, the error 

rate starts increasing again.  The exploding and 

vanishing gradient descent problem is the source 

of this, as it leads to overfitting of the model and 

an increase in error, Fortunately, Residual 

Networks have proved to be quite efficient in 

solving this problem because they employ a skip 

connection or a "shortcut" between every two 

layers along with using direct connections 

between all the layers [31].  

 

3.2.3 Attention mechanisms 

The main idea behind attention mechanisms 

is to recognize the most important elements of 

feature maps in convolutional neural networks 

(CNNs) that the redundancy is removed for 

machine vision applications.  Attention 

mechanisms generate attention maps that help 

CNNs focus on important spatial or channel-

wise features [32,33]. 

3.3 Crack Quantification 

We utilized deep learning techniques using 

the improved UNET 3+ algorithm to extract the 

crack precisely. Nevertheless, the dimensions of 

the crack remain indeterminate. The pavement 

crack is often measured in terms of width, 

length, and depth, all of which are critical 

indications that assess the severity of the crack 

and inform the restoration plan. In most studies, 

crack quantification is performed on the 

anticipated binary crack map using image 
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processing techniques and geometric 

calculations. However, the morphological 

characteristics of cracks are not thoroughly 

addressed, which reduces efficiency and 

accuracy. 

At this stage, the suggested model is 

subjected to a case study to verify its robust and 

dependable performance in a real-world 

environment. We used a dataset comprising 

asphalt crack images from local Iraqi roadways. 

The segmentation model produces segmented 

images. Through this rigorous testing, the 

proposed model can be validated for its 

effectiveness in solving many safety problems, 

improving road performance, and reducing 

maintenance costs.  

We provide a region-connected search 

method based on the linked component of 

cracks to make the visible cracks more 

comprehensive, distinct, and consistent with the 

real trend of cracks. Following the acquisition of 

the crack binary image's contour coordinates, 

the crack's length is computed using the 

coordinates that were obtained, and the average 

crack width is computed by dividing the crack's 

length by the area of the linked component. The 

contour is examined after it is sketched in the 

image of the crack area. The contour is analysed. 

Finally, the results of the crack length and width 

are displayed in the crack image, as shown in 

Figure 4, which shows the steps of crack 

quantification. 

i. Image Pre-processing: As shown in Figure 

5,  A series of operations is applied to find 

and analyze the contour of the crack 

(Convert image to Gray-scale, to blur the 

image, apply Gaussian filter [34], to convert 

the image pixels to a binary image, apply 

adaptive Thresholding, Morphological 

Operations, most common morphological 

operations are erosion and dilation. Erosion 

removes pixels from image borders, 

whereas dilation adds pixels. 

Morphological processing removes tiny 

cracks and fills gaps in detected cracks, 

improving crack detection accuracy [35].  

 

 

Figure 4. Crack quantification by real-world data steps 

 

Figure 5. Image pre-processing steps

ii. Find Optimal Contour: We relied on 

geometric analysis of the crack contour to 

accurately detect real cracks, which helps in 

filtering real cracks from noise in the image. 

To achieve this, we applied canny edges 

filter to find the edges (connected 

components) and then find the contour 

using the OpenCV, a “library in Python 

programming language,” simplifies 

locating and drawing crack contours 

through two basic functions: find-Contours 

() and draw-Contours () [35]. 

The optimal contour was chosen based on 

the area. The contour area is then calculated 

using the function counter area (); small area 

contours are neglected because they often 

represent noise or unimportant details, while 

large areas are considered because they 

represent mostly cracks.  

The optimal crack is calculated by assuming 

a minimum threshold (Min value), so areas 

smaller than the previously specified value are 

neglected, and areas larger than the specified 

value are mostly considered a contour of cracks. 



Shemeam T. Muhey, Sinan A. Naji/ Diyala Journal of Engineering Sciences Vol (18) No 3, 2025: 68-87 

78 

 

After that, we verify whether the contour 

represents a crack or not by determining the 

smallest rectangle surrounding the contour 

through (GetMinAreaRect(contour)), and the 

width and length of the rectangle are calculated. 

Through (aspect-ratio = length/width) and if the 

cracks are real, this ratio is greater or equal to 

(3), but if this ratio is less, it is not considered a 

crack [36]. This ratio was adopted as a minimum 

because studies of crack analysis in road 

engineering and materials science show that 

actual cracks in substructures have a length-to-

width ratio ranging from 3 to 20 or more... If the 

ratio is less than 3, this means that the shape is 

square or circular, but if the ratio is greater than 

3, this means that the shape is longitudinal and 

thin, as the cracks are considered longitudinal 

and thin, which is caused by mechanical stress 

and thermal changes, which leads to linear 

cracking, making them much longer than their 

width. 

iii. Crack analysis 

The algorithm (1) includes analyzing cracks 

to determine their dimensions (width, length, 

angle, and orientation), which will then be 

translated into actual measurements. This 

algorithm mixes mathematical geometry, image 

analysis, and engineering data processing to 

present an accurate and efficient method for 

analyzing cracks in infrastructure. It generates 

interpretable results, making it suitable for 

practical applications in road maintenance. We 

employ a specified angle threshold (Angle 

Threshold = 30°) to consistently classify crack 

direction into horizontal, vertical, and diagonal 

orientations.  Previous investigations 

corroborate this threshold, which indicated that 

an angular tolerance of 25°–35° was efficient in 

categorizing cracks under diverse situations.  

The 30° threshold value signifies an effective 

equilibrium between accuracy and tolerance in 

practical settings, particularly where fractures 

may display minor angular variations due to 

surface defects or perspective distortions. 

 

 

Algorithm (1): Analysis Crack 

Input: Valid crack contour , Angl_Threshold=30 

Output: crack properties 

Begin 

Step 1: Get rotated rectangle properties: 

             rect = GetMinAreaRect(contour) 

Step 2: Calculate dimensions: 

width = Min(rect.width, rect.height)  

length = Max(rect.width, rect.height)  

angle = rect.angle 

Step 3: Normalize angle 

          area = CalculateArea(contour)  

           IF width > length:  

                angle = angle + 90  

           END IF 

Step 4: Determine orientation 

IF (Angle < Angl_Threshold (Angle > (180 -  

Angl_Threshold))Then  

    orientation ="horizontal"  

IF |Angle - 90| < Angl_Threshold Then 

orientation ="vertical"    

IF Angle < 90 Then orientation ="diagonal-

right" 

IF Angle > 90 Then orientation = "diagonal-

left"   

Step 5: return{contour: contour,  

                                width: width,  

                               length: length,  

                                angle: angle,  

                              center: CenterPoint, 

                              orientation: orientation} 

End 

 

iv. Convert to real measurements 

It is necessary to translate the resultant 

measurements (in pixels) to millimetres (mm) 

for informed decision-making in road 

maintenance. We derive the conversion factor 

for applying it to the real measurements of 



Shemeam T. Muhey, Sinan A. Naji/ Diyala Journal of Engineering Sciences Vol (18) No 3, 2025: 68-87 

79 

 

length, width, and area, as demonstrated in the 

subsequent equation [37]: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶𝐹) =  
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑤𝑖𝑑𝑡ℎ (𝑚𝑚)

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑤𝑖𝑑𝑡ℎ (𝑝𝑖𝑥𝑒𝑙)
     (1) 

𝑙𝑒𝑛𝑔𝑡ℎ𝑚𝑚 =  𝐶𝐹 ∗  𝐿𝑒𝑛𝑔𝑡ℎ𝑝𝑖𝑥𝑒𝑙                        (2) 

𝑤𝑖𝑑𝑡ℎ𝑚𝑚 =  𝐶𝐹 ∗ 𝑤𝑖𝑑𝑡ℎ𝑝𝑖𝑥𝑒𝑙                            (3) 

𝐴𝑟𝑒𝑎𝑚𝑚 2 =  𝐶𝐹2 ∗  𝐴𝑟𝑒𝑎𝑝𝑖𝑥𝑒𝑙2                       (4) 

4. Experiments results and analysis  

4.1 Implementation details and Dataset 

Collection 

The training utilized the Adam optimizer, 

including a learning rate of 0.0001 and a batch 

size of 32 at 100 epochs. All tests were 

conducted with TensorFlow on a Windows 10 

computer with an Intel Core i7 running at 3.60 

GHz and 16 GB of RAM. In this study, we 

conducted experiments using two datasets to get 

more accurate results: 

In this study, we conducted experiments 

using two datasets to get more accurate results: 

 Set 1: The “SUT-Crack Dataset “which 

contains 130 high-resolution images in jpg 

format, with dimensions of 3024 by 4032 

pixels [38]. The images are organized dually, 

meaning that each original image is matched 

by its corresponding ground truth image, as 

shown in Figure 6. SUT-Crack is available at 

https://doi.org/10.17632/gsbmknrhkv.6 

 

 Set 2: The “IRD-Crack Dataset”: which 

represents our local dataset. It comprises of 

asphalt crack images that were collected in 

cooperation with the directorate of highways 

and bridges in Diyala governorate. It includes 

various types of images that present various 

problems for crack detection, such as 

shadows and stains of oil. A fixed height of 

one meter, directly above the pavement, was 

used to capture the high-quality photos. using 

a digital camera type (Canon RP + 18-

135mm), with a resolution of (6240 × 4160). 

All pictures were captured during morning 

hours to ensure clarity and similar lighting 

conditions. The images in this dataset were 

annotated by the use of Labelme application. 

This dataset was prepared specially to reflect 

the real-world environment on local asphalt 

roads. Figure 7 shows a sample of these 

images with their corresponding masks. 

These images of datasets present various 

problems for crack detection, such as oil 

stains, shadows, and varying lighting 

conditions. This feature improves the 

reliability of automated pavement crack-

detecting methods and simulates real-world 

circumstances. 

The training, validation, and testing images 

are from the SUT-Crack dataset, whilst the real-

time test images are sourced from the IRD-

Crack dataset. During pre-processing, images 

designated for training, validation, and testing 

are downsized to 640 x 640 x 3 and 320 × 320 

pixels. The limited size of the SUT-Crack 

dataset may not furnish sufficient training data 

to attain appropriate outcomes. To tackle this 

difficulty, diverse strategies are utilized to 

enhance the dataset and increase the quantity of 

photographs.  Augmentation employs rotation, 

shifting, shearing, zooming, flipping, and 

reflection as shown in Figure 8.  

 

        

    

             (a)                (b)              (a)               (b) 

Figure 6. Sample of SUT-Crack dataset of real cracks; (a) Original image; (b) Ground truth image. 

https://doi.org/10.17632/gsbmknrhkv.6
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Figure 7. Samples of the LIR-Crack Dataset. 

 

       

       Original Rotation 

Horizontal 

Flip 

Vertical Flip Zoom 

Horizontal 

shift 

Vertical shift 

Figure 8. Results of the Augmentation Operations for SUT-Crack dataset. 

4.2 Evaluation metrics 

To statistically assess the experimental To 

statistically assess the experimental results, 

many performance metrics were analysed, 

including Accuracy (ACC), Precision (Pr), 

Recall (Re), Dice Coefficient (DC), mean 

Average Precision (mAP), and Intersection over 

Union (IoU). The methods used for metric 

calculation are delineated in Equations (5), (6), 

(7), (8), (9), and (10) respectively[39]. 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                    (5) 

𝑃𝑟 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                   (6) 

𝑅𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                   (7) 

𝐷𝐶 =
2𝑇𝑃

𝐹𝑃+2𝑇𝑃+𝐹𝑁
                                           (8) 

Where TP = True Positives, TN =True 

Negatives, FP = False Positive, and FN = False 

Negatives. 

The average precision (AP) denotes the area 

below the precision-recall curve, whereas mean 

average precision (mAP) refers to the average of 

different classes of AP values: 

𝑚𝐴𝑃 =  
𝐴𝑃

𝑁
=  

∑ ∫ 𝑝(𝑟)𝑑𝑟
1

0
𝑁
1

𝑁
                              (9) 

where N is the number of crack classes, p is the 

percentage of all anticipated positive samples 

that are successfully detected, and r is the 

percentage of all actual positive samples that 

were correctly detected. 

The Intersection over Union (IoU) is the 

ratio of the intersection to the union of the 

predicted mask and the ground truth data, 

expressed as: 

𝐼𝑜𝑈 =  
𝐴∩𝐵

𝐴∪𝐵
                                                    (10) 

where A and B indicated the predicting image 

mask and ground truth image mask, 

respectively. 

4.3 Crack detection results 

We utilized validation data from the SUT-

Crack dataset to assess the efficacy of the 

proposed crack detection algorithm in the object 

detection phase. The findings are displayed in 

Table 4, illustrating performance indicators like 

Precision, Recall, mAP@0.5, and 

mAP@0.5:0.95. At an IoU threshold of 0.5, the 

suggested YOLOv10 model attained an 
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(mAP@0.5) of 68.90%. When the IoU threshold 

was varied from 0.5 to 0.95, it produced an 

mAP@0.5:0.95 of 54.58%, as seen in Figure 9. 

Furthermore, Figure 10 and   Figure 11 depict 

the precision-confidence and recall-confidence 

curves, affirming the model's resilience across 

different confidence levels.   Figure 12 

illustrates that YOLOv10 effectively detects 

fractures, even under adverse situations like 

noise, illumination fluctuations, and oil stains. 

YOLOv10 not only delivered great detection 

accuracy but also enhanced computational 

efficiency, rendering it particularly suitable for 

real-time asphalt crack detection systems.  This 

results from its enhanced design, which 

diminishes processing time and resource use 

while preserving detection accuracy. 

 

Table 4: Detection Results and compare with previous studies. This mark "N/R" indicates that the 

results are not available. 

Author method dataset Precision Recall mAP@0.5 mAP@0.5:0.95 mAP 

Deng et 

al,2023 

YOLOv5& 

Attention ResNet 

RDD 

 
N/R N/R N/R N/R 91 

Li et 

al,2024 

YOLOv8& 

attention mechanism 

(SimAM) 

RDD

2022 
N/R N/R 62.5 36.4 N/R 

YOLOv10 

(ours) 

YOLOv10& 

UNET 3+ 

SUT-

Crack 
100 91 68.90 54.58 N/R 

Table 4 demonstrates that the suggested 

YOLOv10 model attained enhanced accuracy 

and recall relative to prior studies.  Although the 

study of  Li et al,2024 [7] indicated a diminished 

mAP\@0.5 and lacked other metrics, and Deng 

et al,2023[8] presented merely an aggregate 

mAP score without a detailed analysis, our 

methodology delivers a more thorough and 

dependable assessment across various 

thresholds,   substantiating the efficacy of 

YOLOv10 in practical detection contexts.  

 

4.4 Crack Segmentation Results 

The loss percentages indicate the disparity 

between the predicted outcomes and the actual 

ground truth values. Lower loss percentages 

indicate a higher concordance between the 

predicted and actual values, so implying that the 

model successfully absorbed the fundamental 

patterns present in the training data. Figure 13 

Illustrates both training/validation loss. 

Utilizing 100 epochs. It indicates that the 

minimal loss score attained during training and 

validation was 0.16. 

The aforementioned values indicate the model's 

excellent performance and efficacy, 

demonstrating its generalizability, as the results 

are consistently low and equivalent in both 

training and validation scenarios. 

Figure 14 depicts visual representations of 

the model's training and validation performance 

with epoch = 100 for Accuracy, Precision, and 

Recall metrics. The maximum accuracy, 

precision, and recall scores achieved during 

training and validation were 0.9906, 0.974, and 

0.999, respectively. 
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Figure 9. The network's performance during the validation process: (a) at an IoU threshold of 0.5, the computed mAP 

(mAP@0.5), and (b) with the IoU threshold varying from 0.5 to 0.95, the computed mAP (mAP@0.5: 0.95). 

 

Figure 10. Results of the Precision-Confidence Curve. 

 

Figure 11. Results of the Recall-Confidence Curve

The results indicate that the model 

demonstrated efficiency in making accurate 

predictions. In contrast, the equilibrium between 

recall and precision indicates that the model is 

accurate in identifying cracks and thorough in 

encompassing every relevant feature, hence 

minimizing false negatives. Reflecting effective 

performance and robust generalization 

capability. 

The proposed system assesses the model 

utilizing various metrics, including (IoU) and 

the Dice coefficient. Our model attained an IoU 

of 0.956 and a Dice coefficient of 0.977, 

signifying a substantial correspondence 

between the predicted and actual segmentations. 
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Figure 12. Results of the crack detection with YOLOv10 

 

Figure 13. Training and validation loss 

 

(a) 



Shemeam T. Muhey, Sinan A. Naji/ Diyala Journal of Engineering Sciences Vol (18) No 3, 2025: 68-87 

84 

 

 

(b) 

 

 (c)       

Figure 14. Training and Validation (a) Accuracy (b) Precision (c) Recall. 

Table 5 provides a comparative evaluation 

of our model's segmentation efficacy relative to 

past studies. Compared with the study in [7], 

which attained an IoU of 87.00 and a Dice 

coefficient 93.14, our model markedly enhances 

both measures, achieving 95.6% IoU and 97.7% 

Dice. In comparison to [8], which obtained an 

IoU of 0.7644, our method exhibits a significant 

enhancement in segmentation accuracy. The 

results demonstrate the superiority of our model 

in accuracy and segmentation efficacy, 

attributable to the integration of the Residual-

Attention UNet architecture, which improves 

feature extraction and segmentation precision. 

Integrating residual connections and attention 

mechanisms enhances fracture identification by 

emphasizing the most related features, resulting 

in superior segmentation tasks. Figure 14 

provides samples of Results of the Crack 

Segmentation with Residual-Attention UNet. 3+ 

4.5 Crack Quantification Results: 

Figure 15 shows the ideal accuracy of the 

proposed system in analyzing cracks and 

converting them into actual measurements (mm) 

with high accuracy. This outstanding accuracy 

makes the system very suitable for use in the 

early detection of pavement cracks, where 

accurate and reliable image analysis plays a 

crucial role in preventing pavement 

deterioration and is a valuable tool for road and 

bridge maintenance officials, enabling them to 

make informed decisions based on the results of 

high accuracy image analysis. Figure 16 

represents the image testing process and crack 

analysis (direction, length, width, and angle).   
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Table 5: Segmentation Results and compare with previous studies. This mark "-" indicates that the results are not 

available. 

models Accuracy Precision Recall IoU Dice 

[7] 98.47 - - 87.00 93.14 

[8] - 86.41 84.97 0.7644 - 

(Ours) 98.96 96.76 98.74 95.60 97.74 

 

     

Figure 15. Results of the crack segmentation with residual-attention UNet. 3+. 

   

Figure 16. Results of the crack quantification results 

4.6 Limitations and Challenges 

Notwithstanding the promising outcomes 

attained by the proposed method, several limits 

must be recognized.  The restricted size of the 

SUT-Crack dataset may impede the model's 

generalizability, notwithstanding the 

augmentation procedures employed.  

Ultimately, fluctuations in illumination, 

shadows, and oil stains within the IRD-Crack 

dataset may provide issues for consistent 

identification, necessitating enhanced resilience 

strategies in future implementations. 

5. Conclusion 

In conclusion, we proposed a method for 

highly accurately assessing road cracks under 

complex backgrounds. An integrated 

framework is proposed that combines crack 

detection, segmentation, and quantification 

based on an image-processing approach with the 

help of deep learning techniques. Crack 

detection is first detected using YOLOv10 and 

then fed into the improved residual-attention 

UNet 3+ model for crack segmentation. We 

proposed a new method for quantification by 
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introducing an algorithm to search for connected 

components of cracks, find the crack's optimal 

contour, and analyze it for real measurements. 

Consequently, we reached the following 

conclusions: The suggested technique can 

accurately detect at the pixel scale. Our method's 

superiority was assessed using precision, recall, 

mAP@0.5, and mAP@0.5:0.95 measures, 

demonstrating greater object detection accuracy 

than prior studies. The crack detection method 

attained 100% precision, 91% recall, and 

68.90% mAP@0.5.  Incorporating an attention 

gate and residual connection significantly 

enhances the accuracy of Residual-Attention 

UNet 3+ for crack segmentation, resulting in an 

IOU of 95.60% and a dice coefficient of 97.74% 

for the segmented cracks.  The advanced crack 

quantification technique can significantly 

mitigate pavement damage by analyzing cracks 

and translating them into precise measures 

(mm). These data provide an accurate 

assessment and characterization of the cracks, 

hence aiding maintenance teams in executing 

appropriate maintenance strategies. 

In future work, we aim to expand the local 

dataset to ensure the diversity and severity of 

pavement defects to detect patching, erosion, 

and many other defects, not just cracks in road 

pavements. We also aspire to promote the 

system through edge computing to detect cracks 

directly from edge devices such as drones and 

IoT evaporators. This can provide real-time 

crack detection and segmentation from 

photographs or videos. 
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