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This study presents a hybrid and interpretable modeling framework that integrates the 

Mori–Tanaka micromechanical model with artificial neural networks (ANNs) to predict 

the elastic modulus of bamboo-reinforced polypropylene composites. A synthetic 

dataset was created encompassing bamboo fiber volume fractions from 5% to 25%, 

enabling the ANN to generalize proficiently across diverse reinforcement setups. The 

ideal network architecture (2–15–1) attained superior predictive performance, with 

mean squared errors under 20 and regression coefficients surpassing 0.98, so validating 

the model's accuracy and robustness. To guarantee reliability, the model was evaluated 

on intermediate components not encountered during training, exhibiting consistent 

performance and resilience to overfitting. The interpretability of the black-box AI model 

was improved via sensitivity analysis and SHAP (Shapley Additive Explanations), 

which revealed that bamboo modulus was the primary factor affecting composite 

stiffness, contributing around 72% of predictive influence, whereas polypropylene 

accounted for 28%. These findings correspond with micromechanical theory and offer 

insights into material design methodologies. Combining physics-based modeling with 

artificial intelligence improves the accuracy of predictions and helps engineers make 

smart choices during the early stages of bio-composite development. This research 

enhances sustainable material innovation by offering a transparent, efficient, and 

scalable modeling tool suitable for comprehensive mechanical property forecasts and 

practical composite design. 
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1. Introduction 

The rising demand for sustainable and eco-

friendly materials has generated significant 

interest in bio-composites, especially in 

engineering and industrial applications. Bio-

composites, consisting of natural fibers 

integrated into polymer matrices, provide an 

appealing equilibrium of performance, little 

environmental impact, and cost [1-3]. Their 

application is proliferating across sectors like 

automotive [4,5], construction [6], packaging 

[7], and electronics [8], attributable to their 
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biodegradability, lightweight nature, and 

mechanical strength [9,10]. 

Bio-composites, derived from renewable 

resources, enhance sustainability by 

diminishing dependence on petroleum-based 

materials and lowering plastic waste, therefore 

lessening their environmental impact [11,12], 

[13] A primary advantage is biodegradability, 

which simplifies end-of-life waste management 

by composting and natural deterioration, hence 

augmenting their environmental appeal [13], 

[14]. Natural fibers, including flax, hemp, kenaf, 
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and sisal, are markedly lighter than traditional 

reinforcements such as glass or nylon, 

facilitating substantial weight reduction in 

composite structures [15,16]. Flax fibers 

possess a density of roughly 1.4 g/cm³, in 

contrast to glass fibers, which exhibit a density 

of about 2.5 g/cm³ [17]. The rigidity of natural 

fibers such as flax varies from 50 to 100 GPa, 

comparable to that of glass fiber [6]. 

The lightweight characteristics of bio-

composites render them exceptionally 

appropriate for automotive and aeronautical 

applications, where weight reduction is essential 

for fuel efficiency and operational performance 

[15], [18]. Besides weight reduction, bio-

composites have a superior strength-to-weight 

ratio, rendering them mechanically competitive 

with conventional materials. Their mechanical 

properties, including as tensile, compressive, 

and flexural strength, can be optimized through 

the meticulous selection of natural fibers and 

biopolymers [19]. Moreover, advancements in 

fiber treatment methods have enhanced fiber 

matrix adherence and diminished moisture 

absorption, hence resolving persistent durability 

issues in bio-composite applications [20,21]. 

Bamboo has emerged as a viable 

reinforcement material among natural fibers due 

to its high growth rate, recyclability, and 

superior mechanical qualities [22,23]. The 

features of bamboo fibers, along with their low 

cost and wide availability, render them very 

ideal for strengthening polymer matrices like 

polypropylene (PP) [23]. Polypropylene is a 

commonly employed thermoplastic due to its 

thermal stability, chemical resilience, and 

compatibility with bio-fillers [24]. The 

amalgamation of bamboo with polypropylene 

yields bio-composites that may demonstrate 

enhanced mechanical properties relative to pure 

polymers [25]. The incorporation of bamboo 

particles and ultrafine bamboo-char (UFBC) 

into polypropylene (PP) markedly improves its 

tensile strength and modulus. A bio-composite 

with a 70/25/5 ratio of PP, Bamboo, and UFBC 

attained a tensile strength of 30.59 MPa, 

representing a 30% enhancement compared to 

pure PP. The tensile modulus attained 460.13 

MPa, representing a 109% increase compared to 

pristine PP [26]. 

Comprehending the mechanical properties 

of these bio-composites, especially their elastic 

attributes, is essential for material selection and 

structural design [27]. Historically, these 

qualities have been assessed by experimental 

testing, finite element analysis (FEA), and 

micromechanical homogenization methods. The 

Mori-Tanaka homogenization model is a 

prevalent mean-field method for forecasting the 

effective properties of heterogeneous materials, 

especially composites. This approach is 

predicated on the concept of inclusions within a 

matrix and employs Eshelby's solution for the 

inclusion problem, rendering it especially 

effective for isotropic matrices [28]. Although 

these methods provide significant insights, they 

may be time-intensive, computationally 

intensive, and susceptible to modeling 

assumptions [29,30]. Advancements in 

computational tools have enabled artificial 

intelligence (AI) to effectively model 

complicated material behavior in materials 

science. Machine learning methodologies, 

especially artificial neural networks (ANNs), 

have exhibited significant capability in 

identifying non-linear correlations between 

input variables and mechanical responses [31]. 

These models derive insights from numerical or 

experimental datasets and may swiftly forecast 

material behavior with considerable precision, 

providing substantial benefits compared to 

traditional methods. 

The utilization of artificial neural networks 

for the mechanical characterisation of bio-

composites has garnered attention in academic 

literature. Ramful and Casseem [32] created a 

deep learning model to forecast the mechanical 

performance of construction-grade bamboo, 

attaining significant predictive accuracy with a 

dataset that encompassed its physical attributes. 

In a separate investigation, Nasri and Toubal 

[33] utilized ANN models to replicate the 

behavior of PP composites reinforced with flax 

and pine fibers, achieving prediction errors 

between 3% and 6% of experimental values. 

Saada et al. [34] combined artificial neural 

networks with response surface methods to 

forecast tensile characteristics of palm-fiber 

epoxy composites, achieving R² values 

exceeding 0.97 for both stress and modulus. 



Sameh Fuqaha, Guntur Nugroho and Ahmad Zaki / Diyala Journal of Engineering Sciences Vol (18) No 3, 2025: 104-123 

106 

 

Furthermore, Al-Jarrah and AL-Oqla [35] 

developed a two-stage ANN framework for the 

categorization of natural fibers according to 

their chemical composition, achieving a 

classification accuracy of 95.6%.  

This study examines the application of a 

feed-forward backpropagation neural network 

to estimate the elastic modulus of polypropylene 

reinforced with 15% bamboo fiber. The training 

dataset is artificially created using the Mori–

Tanaka micromechanical model, allowing the 

ANN to comprehend the fundamental structure–

property correlations. Our objective is to assess 

the prediction efficacy of the ANN and illustrate 

its value as a rapid, precise, and comprehensible 

instrument in the evaluation of bio-composites. 

This study enhances the existing literature on 

sustainable material creation by presenting a 

hybrid modeling framework that integrates 

theoretical micromechanics with intelligent 

prediction systems. This technique facilitates 

the shift towards environmentally sustainable, 

data-driven material design methodologies. 

 

2. Methodology 

Figure 1 shows the approach used in this 

work, which includes all the steps from 

preparing the materials to creating the computer 

model. The first step in making the bio-

composite is to choose and mix polypropylene 

(PP) and bamboo fibers. After the material is 

made, the mechanical properties of each part are 

measured and used to generate a dataset. The 

Mori–Tanaka homogenization approach, a 

micromechanical model that calculates the 

composite's overall elastic modulus by taking 

into account how the matrix and the 

reinforcement work together, was used to 

produce this dataset. 

 
Figure 1. Flowchart illustrates the methodology for predicting the elastic modulus of a polypropylene-bamboo bio-

composite. 

The artificial neural network (ANN) model 

created in this study was only trained on 

synthetic data produced by the Mori–Tanaka 

micromechanical model. The predictive 

capability of the ANN is intricately linked to the 

assumptions and constraints of that analytical 

framework. This engenders a form of circular 

thinking, when the ANN predominantly learns 

to replicate a theoretical model instead of actual 

experimental behavior. This technique is 

beneficial for examining the potential and 

interpretability of ANN-based predictions in a 

structured, model-driven context, but it does not 

substitute for empirical validation. Future 

studies will integrate actual data from physical 

bamboo/PP composites to address this 

shortcoming. This stage is crucial for assessing 

the ANN's performance beyond theoretical 

limits and validating its practical applicability in 

manufacturing and design contexts. 
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2.1 Material  

Polypropylene, a prevalent thermoplastic 

with an annual global production surpassing 10 

million tons, was selected as the matrix for this 

investigation owing to its lightweight 

characteristics, mechanical strength, thermal 

stability, recyclability, and cost-effectiveness 

[36]. Its compatibility with natural fillers and 

sustainability in many technical applications 

validate its adoption. The Mori–Tanaka mean-

field The study employed isotactic 

polypropylene, which comprised 85% of the 

composite material. The polypropylene has the 

following thermo-mechanical properties: a 

specific heat capacity of 3100 J/kg·°C, a 

Poisson's ratio of 0.42, and a Young's modulus 

(E) of 1034 MPa. These qualities show that it is 

good for improving natural fiber-reinforced 

composites by giving them the best combination 

of thermal and mechanical properties. Figure 2 

shows how the molecules in isotactic 

polypropylene are arranged. It shows how 

methyl groups are arranged in a systematic way 

along one side of the polymer backbone, which 

increases crystallinity and mechanical strength. 

The model is used to mimic the elastic 

properties of bio-composites made of 

polypropylene and bamboo fibers. 

 

 
Figure 2. The molecular structure of isotactic polypropylene employed as the matrix material [37]. 

Because it grows quickly and is good for the 

environment, bamboo is a good choice for 

building materials instead of more traditional 

ones. Some types of bamboo can grow up to 20 

cm per day, which is a very fast rate of 

development. For example, Moso bamboo 

(Phyllostachys pubescens) grows an average of 

17 cm every day [38]. Bamboo grows quickly; 

thus it can achieve full maturity in just one year. 

However, some types may take three to five 

years to fully develop [39], [40]. Bamboo is a 

great material for polymer composites since it 

grows back so quickly. Figure 3 shows the steps 

in processing bamboo fibers, from cutting them 

down to getting the natural fibers out. The 

process starts with cutting bamboo into strips, 

then soaking or steaming it, crushing it with 

machines, and breaking it down. Finally, the 

bamboo is brushed and degummed to make 

natural bamboo fibers that may be mixed with 

polypropylene. 

For this study, only clean, mold-free 

bamboo stalks were selected. These were cut 

into 35 cm segments, boiled in water for 5 hours 

to remove lignin and hemicellulose residues, 

and subsequently oven-dried at 100 °C. The 

desiccated fibers were blended with isotactic 

polypropylene at a weight ratio of 15% fiber to 

matrix with a Haake Rheomix internal mixer. 

The mixing process occurred at 180 °C with a 

rotor speed of 40 rpm. 

2.2 Approach 

Figuring out how bio-composites behave 

mechanically isn’t always simple. Different 

materials interact in complex ways, and no 

single method captures it all. People have used 

lab testing, finite element models, and 

micromechanical approaches to study these 

materials. Each method brings something 

useful, but they also have downsides—some 

take too much time, others need lots of 

computing power, and not all are flexible. In this 

study, we decided to combine a 
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micromechanical model with a data-driven 

method. The goal was to keep the results reliable 

while making the whole approach more efficient 

and easier to use without needing tons of 

resources. 

We use the Mori–Tanaka mean-field 

homogenization model to model how 

polypropylene–bamboo fiber bio-composites 

behave when they are stretched. This analytical 

method calculates the effective Young’s 

modulus of the composite by integrating the 

separate mechanical characteristics and volume 

fractions of its components, specifically the 

polypropylene matrix and bamboo fiber 

reinforcement [41]. The modeling approach 

commences with the specification of the 

mechanical and microstructural characteristics 

for each phase, then employing the Mori–

Tanaka scheme to ascertain the composite's 

overall effective elastic response.  

The synthetic elastic modulus values 

obtained from the Mori–Tanaka 

homogenization process were subsequently 

used to construct the training dataset for the 

machine learning model.The complete 

workflow of this homogenization process is 

illustrated in Figure 4, emphasizing the 

transition from constituent properties to an 

overall homogenized composite model. Table 1 

shows a representative sample of the synthetic 

dataset that was made using the Mori–Tanaka 

homogenization method. Each data point is 

linked to a certain set of input parameters, like 

the elastic moduli and volume fractions of the 

polypropylene matrix and bamboo fibers. We 

changed these parameters in a methodical way 

to find the effective modulus of the bio-

composite, which was the output variable used 

to train the ANN. This technique makes sure that 

the ANN is not just fitting random data by tying 

the dataset to connections that are physically 

specified. This way, the ANN is learning from a 

model that truly shows how real materials 

behave. 

 

 

 
Figure 3. Stages of bamboo fiber preparation including cutting, boiling, and drying prior to compounding with 

polypropylene [42]. 
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Figure 4. Workflow of the Mori–Tanaka mean-field homogenization model used to simulate the composite’s elastic 

modulus 

Table 1: Sample synthetic dataset generated using Mori–Tanaka model (Vf= 0.15) 

E_PP (MPa) E_Bamboo (MPa) VF E_MT (MPa) 

1038.97 14969.23 0.15 3128.507 

1032.62 14685.68 0.15 3080.577 

1040.48 14542.18 0.15 3065.732 

1049.23 14449.45 0.15 3059.263 

1031.66 13860.74 0.15 2956.021 

1031.66 14240.08 0.15 3012.922 

1049.79 14369.68 0.15 3047.775 

1041.67 15128.56 0.15 3154.707 

1029.31 14771.81 0.15 3090.681 

1039.43 13718.48 0.15 2941.284 

1029.37 14762.04 0.15 3089.267 

1029.34 14407.46 0.15 3036.06 

1036.42 14261.54 0.15 3020.188 

1014.87 14905.84 0.15 3098.513 

1016.75 15115.5 0.15 3131.563 

1028.38 15065.64 0.15 3133.967 

1023.87 14180.39 0.15 2997.35 

1037.14 14445.39 0.15 3048.38 

1024.92 14765.63 0.15 3086.027 

1019.88 15087.77 0.15 3130.061 

1048.66 14360.41 0.15 3045.42 

1031.74 14507.17 0.15 3053.056 

1034.68 14046.83 0.15 2986.499 

1019.75 14001.9 0.15 2967.074 

1028.56 15006.26 0.15 3125.212 

1035.11 15278.12 0.15 3171.561 

1022.49 14563.99 0.15 3053.716 

1037.76 15101.77 0.15 3147.358 

1027.99 14780.82 0.15 3090.917 

1031.08 14277.44 0.15 3018.037 

1027.98 14780.7 0.15 3090.89 

1052.52 15369.02 0.15 3199.997 

1033.87 14582.09 0.15 3066.098 

1023.42 15382.32 0.15 3177.258 

1042.23 13290.13 0.15 2879.411 

1021.79 15010.95 0.15 3120.166 

1036.09 14643.52 0.15 3077.204 

1014.4 14450.5 0.15 3029.817 

1020.72 14645.88 0.15 3064.492 

1035.97 13606.22 0.15 2921.506 



 

Sameh Fuqaha, Guntur Nugroho and Ahmad Zaki / Diyala Journal of Engineering Sciences Vol (18) No 3, 2025: 104-123 

 

110 

 

 

Alongside the initial dataset at 15% fiber 

volume, the Mori–Tanaka model was also 

utilized to simulate bio-composite behavior at 

different fiber volume fractions: 5%, 10%, 20%, 

and 25%. This enhancement allowed the ANN 

to train and test across a broader spectrum of 

compositions, improving its generalization 

capability. One hundred fifty new synthetic 

samples were produced and incorporated into 

the training, validation, and testing processes. 

Although the dataset for each fiber volume 

fraction consisted of 40 samples, this was 

sufficient for effective model training due to the 

low-dimensional input space (two input 

variables) and the smooth, continuous nature of 

the Mori–Tanaka outputs. 

 In small structured problems like this, 

artificial neural networks can converge stably 

and generalize well with relatively compact 

datasets, especially when the training process is 

supported by cross-validation and noise-

resilience testing. The incorporation of datasets 

from five distinct fiber volume fractions (5–

25%) enhanced the variety and density of 

training inputs, culminating in a total of 150 

synthetic samples across all compositions. This 

guaranteed that the ANN was sufficiently 

exposed to the parameter space and prevented 

underfitting. Table 2 provides a summary of the 

sampling ranges for each input parameter, 

illustrating the systematic distribution technique 

employed to cover the input domain. 

Due to the numerical characteristics of the 

input data, convolutional neural networks 

(CNNs) were deemed inappropriate; 

consequently, a feed-forward backpropagation 

(FFBP) network architecture was chosen for its 

efficacy in addressing nonlinear regression 

challenges [43]. In this architecture as shown in 

Figure 5, the input signals propagate forward 

through the network layers, while the error is 

backpropagated during training to update the 

weights. 

 

 

 

 

 

 

Table 2: Input Parameter Ranges Used in ANN 

Dataset Generation 

Input 

Parameter 
Symbol Range 

Distribution 

Type 

Number 

of 

Levels 

Bamboo 

modulus 
EB 

13,000 

– 

15,500 

MPa 

Uniform 5 

Polypropylene 

modulus 
EPP 

1,000 – 

1,050 

MPa 

Uniform 5 

Fiber volume 

fraction 
VF 

0.05 – 

0.25 
Discrete 

5 (steps 

of 0.05) 

 

 
Figure 5. Architecture of the artificial neural 

network (2–15–1 configuration) used for predicting the 

Young’s modulus of the bio-composite. 

We used the Levenberg–Marquardt (LM) 

algorithm to train the neural network, mainly 

because it’s fast and works well for problems 

that aren’t linear [44]. The ANN setup we went 

with had two input nodes—one for the elastic 

modulus of the matrix and one for the fiber a 

hidden layer with 15 neurons, and one output 

node that gives the predicted Young’s modulus. 

This is what’s shown in Figure 6, which also 

outlines how the data flows through the network 

and how it learns by going forward through the 

layers and then adjusting based on the error 

using backpropagation. 

We randomly divided the dataset into three 

parts: 70% for training the network, 15% for 

validating it during training, and the last 15% for 

testing it after training was done. We looked at 

two things to see how well the network worked. 
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The Mean Squared Error (MSE) is one of them. 

It tells us how far off the predicted values are 

from the real ones. The other was the regression 

coefficient (R), which shows how well the 

predicted values follow the actual trend [45]. 

To lower the chance of overfitting, the 

network's architecture was purposefully limited 

by limiting the number of neurons. The training 

process was closely watched, and at each 

iteration, weights and biases were changed in a 

way that reduced the error function. Also, the 

dividend function was used to randomize how 

data was spread out, which kept the model's 

learning process statistically sound. These 

changes made the network better at 

generalizing, which led to more stable and 

reliable results across different runs. 

 
Figure 6.  The ANN model's training state 

In engineering practice, the Mori–Tanaka 

model is often used to estimate the stiffness of 

composite materials. It offers a useful 

theoretical basis, but its reliability depends 

heavily on assumptions that may not always 

match real-life conditions. These encompass 

optimal interfacial adhesion between phases, 

homogeneous fiber distribution, and isotropic 

matrix characteristics. Although these criteria 

may apply in idealized systems, they frequently 

do not occur in practical applications especially 

in natural fiber composites like bamboo-

reinforced polypropylene, which are 

intrinsically heterogeneous and susceptible to 

variations in material properties. The use of 

purely analytical models is constrained when 

confronted with the intricate, non-linear 

interactions inherent in these bio-composites. 

This study incorporates artificial neural 

networks (ANNs) as a supplementary, data-

driven modeling instrument to overcome these 

constraints. In contrast to conventional 

analytical methods, artificial neural networks 

(ANNs) do not depend on predetermined 

assumptions and may immediately capture 

complex, multi-variable interactions from the 

data. In this context, the ANN is trained to 

comprehend and generalize the patterns inherent 

in the synthetic dataset produced by the Mori–

Tanaka model, therefore enhancing its 

prediction capacity across a wider array of 

material configurations. This hybrid approach 

capitalizes on the advantages of both methods—

analytical rigor and data adaptability—while 

providing supplementary benefits, including 

improved computing efficiency, sensitivity 

analysis, and the possibility of integration with 

experimental or optimization-based procedures. 

To enhance the generalization capability of 

the ANN, especially with diverse reinforcement 

levels, the fiber volume fraction (VF) was 

explicitly included as a third input feature. The 

synthetic dataset was expanded to encompass 

five separate fiber volume fractions: 5%, 10%, 

15%, 20%, and 25%. This helped the ANN learn 

from a wider range of material combinations 

and comprehend how changes in fiber content 

affect the composite's elastic response. The 

ANN architecture was changed from a 2–15–1 

to a 3–15–1 setup. The input neurons 

represented the elastic modulus of the 

polypropylene matrix, the bamboo fiber, and the 

fiber volume fraction, respectively. Adding VF 

as a direct input not only makes the network 

better at making predictions, but it also makes 

the model more physically transparent when 

showing changes in structure within the bio-

composite. potential integration with ANN 

models to improve and speed up the prediction 

of mechanical properties for a wide range of 

material configurations. 

 

3. Results and Discussion 

Once the training phase concluded using 

synthetic data derived from the Mori–Tanaka 

homogenization models, the artificial neural 

network (ANN) produced two key outputs: a 

performance plot and a set of regression curves. 

As shown in Figure 7, the feedforward 

backpropagation process is visualized through 
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its evolving metrics. Three elements were 

particularly important throughout training: the 

gradient, the adaptive learning rate μ (Mu), and 

the count of validation failures. The gradient 

consistently declined, which is expected as the 

network learns. In contrast, μ remained steady 

for a few epochs before beginning to drop. 

Meanwhile, validation failures began to increase 

around epoch 6 and peaked at 5 by epoch 12. 

This pattern suggests the onset of generalization 

loss. For this reason, early stopping was applied 

to preserve the model at its optimal state and 

prevent overfitting. 

Figure 8 depicts the performance curve, 

showing the evolution of mean squared error 

(MSE) across the training, validation, and 

testing phases throughout 13 epochs. The 

minimum validation error of 14.95 was 

observed at epoch 7, which was autonomously 

designated as the ideal cessation point to avert 

overfitting. After this epoch, validation 

performance commenced to decline, signifying 

that the model had attained its optimal 

generalization state. This curve illustrates the 

effectiveness of the ANN in achieving an ideal 

configuration, characterized by a steady 

reduction in training error and a distinct early 

termination criterion based on validation 

performance. 

 

 

 

 
Figure 7. Evolution of the training process using the feedforward backpropagation algorithm

 

As shown in Table 3, the neural network was 

designed with a straightforward 2–15–1 

architecture. It takes in two inputs the elastic 

moduli of polypropylene and bamboo fiber 

processes them through a hidden layer of 15 

neurons using a hyperbolic tangent sigmoid 

(tansig) activation function and produces a 

single output representing the predicted 

Young’s modulus of the composite. 

The training utilized the Levenberg–

Marquardt optimization algorithm, a recognized 

method for rapid convergence in nonlinear 

regression issues. The dataset was randomly 

partitioned using the dividerand function into 

training (70%), validation (15%), and testing 

(15%) groups. The model completed 13 training 

epochs, with early stopping activated following 

6 validation failures, which transpired 

immediately after epoch 7, as indicated by the 

training performance metrics.  
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Figure 8. Performance curve displaying the Mean Squared Error (MSE) evolution during training, validation, and 

testing phases. The best validation performance was achieved at epoch 7. 

 

Table 3: Configuration and training parameters of the artificial neural network model 

Parameter Value 

Data Division Random (dividerand) 

Training Algorithm Levenberg–Marquardt (trainlm) 

Performance Function MSE 

Evaluation Metrics R, MEX 

Figure 9 shows a comparison of the chosen 

activation functions: tansig, logsig, ReLU, and 

swish. This is to further show that they are 

appropriate for this situation. The top panel 

shows the output range of each function, while 

the bottom panel shows the gradients of each 

function. Tansig and logsig demonstrate the 

traditional vanishing gradient phenomenon in 

saturation regions, but ReLU and swish preserve 

more robust gradients throughout an extensive 

input range. But the current network's surface 

features, along with the Levenberg–Marquardt 

algorithm, help with the gradient decay 

problem. There was no sign of training 

stagnation or performance decline, which means 

that tansig was enough for the current issue 

scale. This method shows how useful other 

functions, like swish, could be in the future 

when working with more complex or deeper 

systems. 

To ensure that the 15-neuron hidden layer 

was not contributing to overfitting, additional 

trials were carried out using smaller network 

configurations with 3, 5, and 10 neurons, as 

illustrated in Figure 10. These simpler models 

slightly reduced the training time, but this came 

at the cost of a modest increase in validation 

error ranging between 1.3% and 4.7% and a 

noticeable drop in R-values on the test set. 

Based on this trade-off, the 15-neuron setup was 

retained, offering the best balance between 

performance and model complexity. To further 

guard against overfitting, early stopping was 

applied based on validation loss behavior, and 

the model was trained using randomized data 

splits for cross-validation. These measures 

helped ensure that the model could generalize 

well without becoming overly tailored to the 

training data. 

To enhance the validation of the ANN 

model's generalization capability across 

different reinforcement levels, a 3D prediction 

surface was created utilizing MATLAB. This 

graph depicts the relationship between the 

projected elastic modulus and variations in fiber 

volume fraction (VF) and bamboo modulus.
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Figure 9. Comparison of activation functions and their gradients. 

 
 

Figure 10. Comparison of artificial neural network architectures with varying hidden layer sizes (3, 5, 10, and 15 

neurons).  

Figure 11 illustrates a distinct trend: 

composite stiffness escalates with increased 

bamboo modulus and higher volume fraction 

(VF). The seamless curve and uniform gradient 

indicate that the ANN effectively grasped the 

fundamental structure–property links, 

exhibiting no evidence of overfitting or 

unpredictable behavior. 

The hyperbolic tangent sigmoid function 

used in the hidden layer, as delineated in 

Equation (1), yields a smooth and bounded 

output ranging from –1 to 1, rendering it 

extremely efficacious for non-linear function 

approximation in this regression endeavor. 

Throughout the training process, the artificial 

neural network's weights and biases were 

iteratively adjusted to reduce the mean squared 

error, while ensuring data integrity and 

robustness via randomized sampling and 

systematic architectural design. 

 

𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =
2

1+𝑒−2𝑥
− 1                 (1)                                                

 

The constructed artificial neural network 

(ANN) comprised two input neurons for the 

Young's modulus of polypropylene and bamboo 
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fiber, a hidden layer including 15 neurons, and a 

single output neuron that predicts the Young's 

modulus of the bio-composite. Table 4 

delineates the configuration and training 

parameters of the chosen model. 

 
Figure 11. ANN prediction surface.       

Table 4: Summary of ANN Training Setup 

Setting Value 

Training Algorithm Levenberg–Marquardt 

Hidden Layer Neurons 15 

Activation Function tansig 

Data Division 70/15/15 (Train/Val/Test) 

Epochs 13 

Best Epoch (Validation) 7 

Early Stopping Criteria 6 validation failures 

                                          

Despite the total number of training epochs 

being 13, the model did not engage in learning 

for the entire duration. Automatic early 

termination was initiated at epoch 7 due to a 

decline in validation performance. This method 

mitigates overfitting, especially in limited 

datasets, by terminating training when the 

generalization error starts to increase. Figure 12 

illustrates that the validation loss attained its 

minimum at epoch 7 and then grew. Subsequent 

trials extending the epoch limit to 50 verified 

that additional training beyond this threshold did 

not produce substantial enhancements in 

prediction accuracy. Consequently, the selected 

epoch count signifies ideal convergence instead 

than premature cessation. 

The predictive accuracy of the ANN was 

further corroborated by regression graphs 

illustrated in Figure 13, which demonstrate a 

nearly linear correlation between actual and 

expected outputs across all data groups. The 

regression coefficients (R-values) for training, 

validation, testing, and overall were 0.99412, 

0.99302, 0.98369, and 0.9912, respectively. The 

elevated R-values validate the network's robust 

capacity to generalize and precisely estimate the 

elastic modulus. Furthermore, it displays a line 

graph that juxtaposes the anticipated modulus 

values with the original target values for all 40 
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data points. The curves demonstrate nearly 

perfect overlap, indicating the model's precision 

in depicting the essential mechanical behavior 

without significant deviation. 

 

 
Figure 12. Visualization of the early stopping mechanism 

Figure 14 depicts the correlation between 

the goal values and the projected outputs 

produced by the neural network model. The two 

curves, depicting the real and predicted Young's 

modulus values, exhibit nearly similar 

progression over all data points. The slight 

difference noted suggests that the model's output 

closely mirrors the original data trend. The 

significant agreement indicates the precision 

and dependability of the established predictive 

model in assessing elastic characteristics. 

 

 

 
Figure 13. Comparison between target values and ANN-predicted outputs  
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Figure 14. Regression analysis plots showing correlation between predicted and actual outputs for training, 

validation, test, and all datasets. 

 

Table 5 provides a comparative summary of 

the Young’s modulus values for pure 

polypropylene (PP), bamboo fiber, and the bio-

composite reinforced with 15% bamboo 

content. The outcomes obtained from 

experimental testing, the Mori-Tanaka 

homogenization method, and the artificial 

neural network (ANN) model are all 

incorporated. The inclusion of bamboo fibers 

markedly increases stiffness, resulting in the 

bio-composite attaining a Young’s modulus of 

around 1584 MPa, an enhancement of 550 MPa 

relative to unreinforced polypropylene. This 

augmentation aligns with anticipations, 

considering the enhanced rigidity of bamboo 

compared to the polymer matrix. The nearly 

same forecast value generated by the ANN 

(1584.299 MPa) in comparison to the Mori-

Tanaka estimate (1584.3 MPa) indicates a 

minimal error of around 3.68 × 10⁻⁶, 

highlighting the model's accuracy. This slight 

mismatch verifies that artificial intelligence can 

accurately forecast the elastic behavior of bio-

reinforced composites with high precision and 

minimal fidelity loss. 

 
 

Table 5:  Comparison of Young’s Modulus for PP, Bamboo, and Bio-Composite (15% Bamboo Fiber) 

Material Young’s Modulus (MPa) 

Polypropylene (PP) 1034.0 

Bamboo Fiber 14600.0 

Bio-composite (Experimental) 1572.9 

Bio-composite (Mori-Tanaka) 1584.3 

Bio-composite (ANN Model) 1584.299 

While the ANN was first trained to replicate 

Mori–Tanaka outputs, this alone does not 

validate its efficacy. The prediction power of the 

ANN was compared to a linear regression 

baseline and assessed on noisy fluctuations of 

the input (±5% random fluctuation in bamboo 

modulus), as shown in Table 6. The ANN 

exceeded the baseline in both MSE and R², 

indicating reliable predictions despite input 

fluctuations. These results suggest that the ANN 

is not merely memorizing but has developed a 

substantial approximation function. 
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A sensitivity study was performed to 

elucidate the impact of each constituent material 

on the composite modulus by independently 

altering the moduli of bamboo and 

polypropylene, while maintaining other 

parameters constant. Figure 15 illustrates that an 

increase in the bamboo modulus led to a more 

significant enhancement in composite stiffness 

than alterations in polypropylene modulus. This 

result indicates the superior stiffness of bamboo 

compared to the polypropylene matrix and 

affirms that the mechanical influence of the 

reinforcement predominates the composite 

behavior at the specified fiber volume percent 

(15%). 

 
Table 6: Comparison of Predictive Models for Bio-

composite Modulus 

Model RMSE R² Notes 

Linear Regression 82.4 0.932 Poor with 

nonlinearity 

ANN (original) 14.95 0.991 Best performance 

ANN (noisy input 

test) 

18.23 0.985 Robust to input 

noise 

 

 

 
Figure 15.  Sensitivity analysis of the composite modulus by independently varying constituent stiffness 

Alongside the deterministic analysis, model 

interpretability was additionally examined by a 

SHAP-style feature significance methodology. 

The proportionate contribution of each 

ingredient was determined based on the Mori–

Tanaka-derived relationship between inputs and 

outcomes. Figure 16 illustrates that bamboo 

fiber contributes around 72% to the composite 

modulus estimate, whereas polypropylene 

comprises about 28%. This interpretable insight 

substantiates the conclusion that increasing the 

reinforcing characteristics especially bamboo 

stiffness can markedly improve composite 

performance. This insight facilitates informed 

design choices in the creation of bio-based 

composite materials. 

This study is explicitly positioned within the 

context of related research by directly 

comparing it to the work of Laabid et al. [46], 

which also employed a feed-forward 

backpropagation neural network (FFBP) trained 

with Levenberg–Marquardt (LM) to forecast the 

elastic modulus of polypropylene reinforced 

with bamboo fibers. Although both this study 

and that of Laabid et al. utilize the Mori–Tanaka 

homogenization procedure to generate synthetic 

datasets and employ a 2–15–1 artificial neural 

network (ANN) architecture, there are several 

notable technical and philosophical differences. 

Laabid et al. constrained their model to a single 

reinforcement level, particularly a 15% fiber 

volume fraction, and investigated only two input 

parameters: the modulus of the fiber and that of 

the matrix. This limitation confines the scope of 

generalization, diminishing its applicability to 

composites with varying reinforcing levels. This 
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study includes fiber volume fraction (VF) as an 

additional input parameter and broadens the 

training dataset to encompass five distinct 

reinforcement levels, ranging from 5% to 25%. 

This upgrade enhances the model's ability to 

generalize effectively and provide more 

practical, real-world predictions. 

 

 
Figure 16. Estimated contribution of each constituent to the predicted composite modulus

 

A further critical distinction pertains to 

model interpretability. Whereas Laabid et al. 

predominantly assessed ANN performance 

through traditional metrics like mean squared 

error (MSE) and regression coefficients (R), the 

current study advances this by incorporating 

SHAP (Shapley Additive Explanations) and 

sensitivity analysis. These methods quantified 

the relative impact of each input variable on the 

expected composite modulus, hence improving 

transparency and facilitating more informed 

material design selections. This study 

incorporates robustness checks by adding 

random noise to the input variables and 

evaluating the performance of various network 

configurations (e.g., employing 3, 5, or 10 

neurons in the hidden layer) to mitigate 

overfitting—an issue only superficially 

examined in Laabid et al.’s methodology.  

Collectively, these advancements illustrate the 

contribution of this research to the field by 

integrating micromechanical modeling with 

interpretable and scalable artificial intelligence 

methodologies. By broadening the input space 

and implementing a more stringent evaluation 

technique, the model attains high accuracy 

while providing profound insights into 

composite behavior across a varied design 

landscape. 

This research incorporated random noise into 

the input variables and evaluated various 

network configurations by modifying the 

number of neurons in the hidden layer (utilizing 

3, 5, and 10 neurons). This study utilized a more 

comprehensive validation strategy compared to 

the restricted evaluation scope in Laabid et al.'s 

approach, facilitating a more profound 

assessment of the model's generalization 

capability. Combining micromechanical 

modeling with interpretable AI techniques 

helped the model not only make accurate 

predictions but also give useful information 

about how different input parameters affect the 

performance of composites. The ANN showed 

great promise for modeling the elastic behavior 

of fiber-reinforced composites by increasing the 

input space and using stricter testing. This 

research validates that the integration of 

analytical models with machine learning can 

yield efficient, scalable instruments for 

forecasting material properties, thereby 

facilitating more sustainable composite design 

and enhancing engineering decision-making 

processes. 

 

4. Limitations  of the Study 

The findings of this study are promising; 

however, certain limitations must be 
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acknowledged. The ANN model was solely 

developed and validated utilizing synthetic data 

generated by the Mori–Tanaka 

micromechanical framework. This ensures 

internal consistency but does not capture the full 

diversity present in experimental or real-world 

contexts. To rectify this discrepancy, further 

research must incorporate empirical testing of 

actual bamboo–polypropylene composites to 

confirm the model's applicability in real-world 

contexts. 

Another limitation is the range of the input 

variables. The analysis encompasses various 

fiber volume fractions (5% to 25%); however, it 

excludes other significant microstructural 

attributes, like fiber alignment, length-to-

diameter ratio (aspect ratio), and fiber 

dispersion degree from the modeling. These 

parameters significantly influence the 

mechanical properties of fiber-reinforced 

composites and warrant consideration in future 

research. 

Furthermore, the existing model exclusively 

concentrates on forecasting the elastic modulus, 

neglecting other significant mechanical 

properties. Attributes such as tensile strength, 

impact resistance, fracture toughness, fatigue 

behavior, and long-term durability under 

environmental stresses (temperature 

fluctuations, moisture exposure, or aging) are 

essential for a comprehensive material 

evaluation but were not considered in this 

context. Furthermore, the assumption of 

homogeneous material properties disregards the 

intrinsic variability in both matrix and fiber 

performance over time and under different 

service situations. 

Ultimately, although SHAP analysis was 

utilized to improve interpretability, its efficacy 

is intrinsically linked to the constraints of the 

ANN and the synthetic dataset on which it was 

trained. The interpretability findings should be 

considered within the framework of a 

controlled, theoretical model rather than a 

completely empirical system. Future research 

that mitigates these constraints, namely by 

incorporating experimental data and broadening 

the range of predicted properties, will augment 

the model's resilience, raise its generalization 

capability, and elevate its practical applicability 

in composite material design. 

 

5. Conclusion 

This study develops a hybrid modeling 

methodology that combines the Mori–Tanaka 

micromechanical theory with artificial neural 

networks (ANNs) to forecast the elastic 

modulus of polypropylene composites 

reinforced with bamboo fibers. Unlike 

conventional analytical models, the ANN has 

superior flexibility, rendering it appropriate for 

amalgamation with experimental data, 

environmental variables, and multi-criteria 

optimization tasks, thereby establishing a 

formidable foundation for advanced composite 

design. A significant difference from previous 

studies is the utilization of a more extensive 

dataset for training and validation, 

encompassing five separate fiber volume 

fractions (5%, 10%, 15%, 20%, and 25%). The 

broadened scope markedly enhances the model's 

ability to generalize and interpolate modulus 

values across diverse material configurations. 

The completed ANN design (2–15–1) regularly 

produced low mean squared error values (sub-

20) and high regression coefficients (exceeding 

0.98), highlighting the model's precision and 

reliability. 

This study included interpretability 

techniques to examine the impact of input 

factors on the anticipated modulus, addressing 

the constraints of conventional black-box AI 

models. The sensitivity analysis indicated a 

greater reliance of the composite's stiffness on 

the bamboo modulus compared to that of 

polypropylene, highlighting the essential 

function of fiber reinforcement. Furthermore, 

Shapley Additive Explanations (SHAP) were 

utilized to quantify this effect, revealing that 

bamboo stiffness contributed around 72% to the 

expected outcomes, while the matrix constituted 

the remaining 28%. These insights offer 

essential direction for enhancing fiber selection 

and treatment in composite creation. 

The suggested paradigm integrates 

predictive power with interpretability, 

establishing itself as a practical and insightful 

instrument for sustainable materials design. 
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Engineers and materials scientists can utilize 

this model in the initial design stages to 

investigate optimal combinations of matrix and 

reinforcement characteristics. Future 

advancements may enhance the ANN 

framework to accommodate multi-objective 

optimization, incorporating stiffness, strength, 

thermal resistance, and environmental 

durability. Integrating experimental information 

will augment the model's robustness and 

applicability across various production 

techniques, fiber geometries, and operational 

situations. This methodology enhances AI-

driven material design strategies in accordance 

with circular economy concepts and the 

development of bio-based composite 

technologies. 
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