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The escalating dependence on artificial intelligence (AI) within the healthcare sector presents 

significant challenges pertaining to data privacy, regulatory adherence, and the pragmatic 

implementation of predictive models. This review meticulously examines the amalgamation of 

Federated Learning (FL) and Differential Privacy (DP) as a prospective framework to mitigate 

these issues within decentralized healthcare infrastructures. We conduct a comprehensive analysis 

of extant FL-DP frameworks, concentrating on their capacity to safeguard privacy, uphold 

performance standards, and function efficiently in real-time clinical settings. The review 

encompasses architectural advancements, edge computing methodologies, adaptive privacy 

budgets, and the contributions of blockchain and the Internet of Medical Things (IoMT) in 

facilitating secure data interchange. Comparative assessments and case studies are synthesized to 

evaluate model precision, scalability, and conformity with regulatory mandates. Notwithstanding 

significant advancements, we delineate critical deficiencies, including ethical dilemmas, 

algorithmic equity, data disparity, and obstacles to deployment. Our contributions consist of a 

benchmarking framework, the delineation of unresolved research inquiries, and actionable 

insights for the formulation of secure, just, and scalable FL-DP systems within the healthcare 

domain. This paper delineates a strategic framework for prospective research and the execution 

of privacy-preserving AI within clinical practice. The outcomes highlight significant potential for 

real-world clinical implementation, fostering enhanced patient care, supporting regulatory 

compliance, and enabling scalable, privacy-preserving AI adoption across diverse healthcare 

environments. 
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1. Introduction  

The incorporation of artificial intelligence 

(AI) into healthcare frameworks is markedly 

reshaping the domain of medical diagnostics, 

prognosis, and tailored treatment by utilizing 

extensive arrays of multimodal patient 
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information [1,2]. AI tools in healthcare, 

including radiology, genomics, wearable health 

devices, and electronic health records (EHR), 

are producing large datasets that can be 

leveraged through deep learning to create 

predictive models for early disease 

identification, clinical decision support, and 
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epidemic prediction [3,4]. Nonetheless, the 

conventional centralized machine learning (ML) 

systems, which require collating data into a 

unified repository, raise significant privacy and 

security issues, especially under strict healthcare 

laws like Health Insurance Portability and 

Accountability Act (HIPAA) and the General 

Data Protection Regulation (GDPR) [5-7]. In 

2023, a prominent healthcare provider faced a 

$6 million penalty for violating HIPAA by 

compromising patient data due to weak 

encryption and unauthorized access, illustrating 

the legal repercussions of non-compliance in 

today's digital environment [8]. Likewise, in the 

European Union, a technology firm incurred a 

€40 million fine under GDPR for improperly 

managing medical data processed by AI systems 

without adequate consent or anonymization [9].   

The implementations of FL-DP are intentionally 

structured to adhere to pivotal healthcare 

regulations: DP aligns with the de-identification 

mandates set forth by the HIPAA and the 

principles of data minimization as delineated by 

the GDPR, whereas federated architectures 

naturally comply with the HL7 FHIR guidelines 

by facilitating decentralized and interoperable 

data exchange. These alignments with 

regulatory frameworks serve to bolster the legal 

and ethical legitimacy of FL-DP systems within 

clinical environments [10]. These systems are 

unfeasible in decentralized healthcare settings, 

such as multi-hospital networks, rural clinics, or 

wearable IoT infrastructures, due to logistical 

and legal hurdles related to inter-institutional 

data sharing [11]. To address these challenges, 

innovative methodologies such as federated 

learning and differential privacy are emerging as 

effective solutions, facilitating the development 

of artificial intelligence models without 

compromising the confidentiality of patient 

information. Moreover, the ethical and 

regulatory complexities associated with 

artificial intelligence applications necessitate a 

multidisciplinary approach that involves 

healthcare professionals, AI developers, 

ethicists, and legislators to ensure the 

establishment of robust, privacy-preserving AI 

frameworks within the healthcare sector [12]. 

As AI progresses, its effective integration with 

healthcare systems presents significant potential 

to transform medical practice, boost diagnostic 

precision, streamline clinical processes, and 

ultimately enhance patient outcomes [13]. 

In the medical field, FL has become a 

revolutionary method that facilitates 

cooperative model training from multiple data 

sources while ensuring the protection of data 

confidentiality and privacy. This distributed 

approach enables various parties, such as 

hospitals and research institutions, to create 

machine learning models without revealing raw 

data, thereby addressing privacy concerns 

associated with centralized data collection [14]. 

A healthcare FL system is shown in Figure 1, 

where localized models are generated using 

patient data (e.g., chest X-rays, ECGs, and 

medical histories) from many institutions. Then, 

while maintaining the confidentiality of 

sensitive data, these local models are sent to a 

central server for synthesis into a 

comprehensive model. In the lower section, the 

FL process is described: (1) local models are 

submitted, (2) the models are aggregated at the 

server, and (3) the global model is redistributed 

to local entities. Within the healthcare sector, FL 

has been effectively applied for applications like 

classifying COVID-19 chest X-rays and 

segmenting brain tumours, achieving 

performance metrics comparable to centralized 

systems with only a minor drop in accuracy, as 

indicated by research from NVIDIA Clara 

across multiple hospitals [15,16]. FL is still 

vulnerable to privacy issues, though, as model 

modifications might unintentionally expose 

private data to inference or reconstruction 

attacks [17]. Differential Privacy (DP), which 

offers mathematical assurances that no one 

record significantly affects the model's 

parameters, is incorporated into FL to reduce 

these dangers. By providing a configurable 

privacy budget (ε), DP techniques like noise 

injection and gradient clipping enable 

developers to balance model effectiveness and 

privacy [18]. However, attaining stronger 

privacy assurances frequently leads to decreased 

model accuracy, fueling ongoing research into 

ideal privacy-utility compromises. By merging 

encryption techniques with secure multi-party 

computation (SMPC), we enhance privacy 

safeguards and ensure adherence to regulations 
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such as GDPR and HIPAA [19]. In addition, FL 

systems that utilize distributed database 

architectures and fog computing address issues 

like data variability and communication 

overhead, leading to better scalability and 

efficiency in healthcare settings [20]. A 

significant advancement toward safer, more 

effective, and equitable healthcare solutions, FL 

encourages collaborative intelligence while 

maintaining the confidentiality of patient 

information. 

 

Figure 1. A FL framework for medical 

applications. Describes the structure of FL in healthcare, 

in which many companies collaborate to construct 

machine learning models on dispersed patient data, 

protecting privacy while boosting model precision 

through coupled local updates. 

The integration of FL and DP in real-time 

healthcare predictive analytics presents an 

exciting yet intricate challenge. The urgency for 

instant analytics in healthcare, driven by 

applications such as sepsis prediction in 

intensive care units and arrhythmia detection 

through wearables, necessitates models that can 

operate efficiently in rapid, latency-sensitive 

environments. Real-time performance is often 

defined by latency limits that are unique to the 

field—particularly, a response time of under 1 

second for alerts in ICUs and a range of 2–3 

seconds for responses in telemedicine. Past 

implementations, like FLARE-Health, have 

demonstrated inference latency as low as 800 

milliseconds, highlighting the potential of such 

systems in latency-critical healthcare scenarios. 

These established limits act as practical 

standards for evaluating the responsiveness of 

future FLDP-IoMT systems [21]. By adopting a 

decentralized method for machine learning, 

federated learning addresses privacy and 

compliance issues by enabling various 

healthcare organizations to collaborate on 

training models without sharing sensitive 

patient information [22]. Integrating FL with DP 

in these situations presents various challenges, 

such as delays in communication, non-IID data 

distributions, and limitations on edge resources 

[23,24]. By processing data closer to its source, 

reducing latency and communication 

constraints, edge computing, when combined 

with FL, can help mitigate these issues. 

Emerging strategies for choosing clients and 

adjusting differential privacy budgets offer 

promising ways to strike a balance between 

privacy and the accuracy of models, making 

sure that only the most relevant data is used for 

training while adhering to privacy regulations. 

But there are still issues that need to be 

addressed, such as guaranteeing model 

correctness in various healthcare contexts and 

handling moral dilemmas with data privacy and 

algorithmic biases [25]. To enhance the 

scalability and acceptance of secure, smart 

healthcare AI solutions, upcoming research 

needs to focus on advancing these technologies, 

embedding them within existing healthcare 

frameworks, and promoting interdisciplinary 

partnerships. By addressing these challenges, 

Federated Learning and Differential Privacy 

combined could revolutionize predictive 

analytics in the healthcare sector, enabling 

prompt interventions and improved patient 

results while ensuring privacy and security are 

upheld [27]. 

This study addresses significant gaps in the 

existing literature by combining FL with DP to 

provide a viable and scalable approach for 

privacy-focused, real-time healthcare AI 

systems. While previous research has 

concentrated on either FL or DP in healthcare 

environments, there aren't many comprehensive 

frameworks that tackle privacy and performance 
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in decentralized environments, particularly 

when real-time demands are involved. 

Additionally, current literature frequently 

neglects the technical challenges of ensuring 

privacy while managing non-independent and 

identically distributed (non-IID) data across 

various healthcare organizations. This paper 

advances the field by introducing a strong 

integration of FL and DP, bolstered by adaptive 

privacy strategies and edge computing, thus 

ensuring compliance with regulations such as 

HIPAA and GDPR while improving model 

robustness in dynamic and latency-sensitive 

healthcare settings. Moreover, it emphasizes the 

role of blockchain-supported Internet of 

Medical Things (IoMT) for secure and 

transparent data sharing, an aspect largely 

overlooked in earlier research on federated 

healthcare systems. Here are the contributions 

of the paper: 

• Presents a unified FL-DP model for 

scalable, privacy-focused healthcare AI. 

• Incorporates adjustable privacy budgets 

to optimize privacy and model efficiency in 

decentralized frameworks. 

• Boosts model efficiency and scalability 

by merging edge computing with IoMT in 

healthcare applications. 

• Utilizes blockchain for secure and 

transparent data sharing among healthcare 

organizations and IoT devices. 

The document is organized as follows: 

Section 2 introduces essential concepts and 

terminology related to Federated Learning and 

Differential Privacy. Section 3 examines current 

studies on FL and DP applications within 

healthcare. Section 4 explores the combination 

of FL and DP, emphasizing its use in real-time 

healthcare predictive analytics. Section 5 

outlines the proposed framework, highlighting 

its structure and technical execution. Section 6 

discusses the challenges, unresolved research 

issues, and possible solutions in FL-DP-enabled 

healthcare systems. Lastly, Section 7 wraps up 

the paper and considers future research avenues. 

 

2. Foundations and Key Concepts 

Federated Learning represents a 

decentralized paradigm of machine learning that 

facilitates collaborative model training among 

multiple clients, such as healthcare institutions 

or devices, without necessitating the exchange 

of their raw data; this characteristic serves to 

uphold privacy while simultaneously mitigating 

data transmission expenses [28,29]. The 

procedure encompasses three fundamental 

phases: the dissemination of the global model to 

the clients, the execution of local training at each 

client, and the integration of the local updates to 

enhance the global model [30]. A typical FL 

round involves three steps: (1) global model 

distribution; (2) local training on each client; 

and (3) aggregation of local updates. The most 

common aggregation algorithm is Federated 

Averaging (FedAvg) (Figure 2), where the 

global model parameters at round t+1 are 

calculated as [31]. 

𝜃(𝑡+1) = ∑
𝑛𝑖

𝑛

𝑁

𝑖=1

𝜃𝑖
(𝑡)

 

Where,  

 𝜃𝑖
(𝑡)

 is the model trained locally on 

client i at round t, 

 𝑛𝑖 is the number of data samples at 

client i, 

 𝑛 = ∑ 𝑛𝑖
𝑁
𝑖=1  is the total number of 

samples across all N clients. 

 
Figure 2. Federated learning round workflow with 

FedAvg aggregation. 
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FL has exhibited nearly centralized accuracy 

within practical healthcare contexts, but in 

isolation, it does not comprehensively mitigate 

the risk of privacy violations. The model's 

gradients or weights disseminated throughout 

the training process may still be susceptible to 

adversarial techniques such as model inversion 

or membership inference attacks. In response to 

this concern, DP is integrated to furnish 

formalized privacy assurances. DP guarantees 

that the contribution of any individual data point 

to the model's output is effectively negligible 

[32]. A randomized mechanism M satisfies ϵ-

differential privacy if, for all neighboring 

datasets D and D′ (differing in one record), and 

for any output subset S ⊆ Range(M), the 

following condition holds: 

 
𝑃𝑟  [M(D)ϵS] ≤ ℮𝜖 . 𝑃𝑟[𝑀(𝐷′)𝜖𝑆] 

Where: 

 ϵ (epsilon) is the privacy budget, 

quantifying the degree of privacy: 

smaller values indicate stronger privacy. 

 The privacy loss grows with multiple 

training rounds, necessitating privacy 

accounting techniques. 

In real-time predictive analytics, the 

applications encompass early warning systems 

for sepsis within Intensive Care Units (ICU), 

real-time arrhythmia detection through wearable 

technology, and surveillance dashboards for 

epidemic outbreaks. Real-time systems are 

necessitated to confront a multitude of 

distinctive challenges: asynchronous updates 

from various clients, devices operating under 

resource constraints, and non-independent and 

identically distributed (non-IID) data 

distributions across diverse populations. For 

instance, data collected from Intensive Care 

Units in two separate hospitals may exhibit 

considerable variation in terms of demographic 

composition, measurement frequencies, and 

definitions of labels [26]. The integration of FL, 

DP, and real-time analytics necessitates a 

cohesive architectural framework that 

effectively balances the principles of security, 

responsiveness, and scalability. A conventional 

system comprises local training modules 

equipped with integrated DP mechanisms, 

routinely scheduled global aggregations, and 

on-device inference engines. Open-source 

frameworks such as PySyft, Flower, and FATE 

provide modular implementations of FL and 

DP, thereby enhancing the feasibility of 

deployment within practical healthcare settings 

[33]. . 
 

3. Federated Learning in Healthcare  

Federated Learning, Differential Privacy, 

and real-time predictive analytics persist in 

transforming secure artificial intelligence 

applications within the healthcare domain. 

Figure 3 represents the FL-DP, illustrating the 

interactions between clients and servers, privacy 

layers, and the incorporation of IoMT and 

blockchain technologies [34]. It showcases the 

collection of data from IoMT sensors, its 

transfer to a central server through APIs, and the 

utilization of blockchain for secure data 

exchanges. The diagram highlights the pathway 

of encrypted data and the off-chain database 

used for monitoring patients and facilitating 

healthcare interactions. In healthcare Federated 

Learning, DP maintains data confidentiality by 

incorporating noise into model updates. Key DP 

methods consist of Laplace DP, which adds 

noise relative to data sensitivity and ε, Gaussian 

DP, ideal for multi-query and high-dimensional 

datasets, and Rényi DP, which offers enhanced 

privacy assurances in multi-round aggregation 

scenarios. The privacy budget (ε) regulates the 

noise intensity; lower ε values enhance privacy 

but impair model accuracy. Adjusting ε is based 

on data sensitivity and model needs. Generally, 

adaptive privacy budgets are employed, 

modifying ε to balance privacy and accuracy 

while complying with regulations such as 

HIPAA and GDPR [35]. 

Current approaches merging FL and 

Reinforcement Learning (RL) in IoT and Edge 

Cloud Networks are being increasingly utilized 

in healthcare systems to improve data privacy, 

real-time performance, and efficiency [36]. 

Federated Learning is effectively employed to 

facilitate decentralized model training on 

sensitive healthcare data, preserving privacy 

while enabling multi-site collaboration. The 
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Adaptive Federated Reinforcement Learning 

System (AFRLS) has been suggested in multiple 

studies to enhance scheduling and offloading 

tasks, reducing delays and energy usage in fog 

and cloud networks. Edge computing is vital for 

local data processing, lowering communication 

overhead, and ensuring prompt responsiveness 

[37]. Furthermore, blockchain technology has 

been incorporated into various frameworks to 

guarantee secure and transparent data exchange, 

tackling the privacy and security issues 

associated with distributed healthcare 

applications [38]. As these frameworks 

progress, contemporary developments unveil 

progressive methodologies that tackle 

previously unresolved issues such as cross-silo 

collaboration, dynamic modeling of patient 

data, and adherence to regulatory standards in 

decentralized infrastructures. This section 

systematically examines innovative 

contributions spanning from 2017 to 2025, with 

a focus on cutting-edge techniques and insights 

that have not been previously explored.  
 

 
Figure 3. Diagrammatic overview of the FL-DP pipeline 

illustrating client-server interactions, privacy layers, and 

integration with IoMT or blockchain layers for better 

clarity. Reprinted from S. B. Othman [34]. 

FL's use in the healthcare industry has 

significantly expanded as a result of recent 

advancements, particularly in novel and real-

time clinical settings. Based on previous 

research, Table 1 compares and contrasts 

centralized, federated, and FL-DP systems to 

emphasize trade-offs in privacy, performance, 

scalability, and regulatory alignment. One 

notable example of this is the 2023 study on 

diabetic retinopathy diagnosis using 

smartphone-based fundus images, which 

achieved an AUC of 91.8% without requiring 

raw data sharing by using domain adaptation to 

reduce inter-hospital imaging disparities [39]. 

This approach is in line with FL's broad 

potential to improve diagnostic accuracy while 

protecting patient privacy, which has been 

highlighted in studies focusing on collaborative 

medical imaging diagnostics across many 

institutions [40]. Similarly, in smart ICU 

environments revealed a 12% enhancement in 

patient stability metrics was revealed, thereby 

illustrating the adaptability of FL in dynamic 

clinical settings [18]. The incorporation of FL 

within healthcare not only mitigates privacy 

issues but also promotes the creation of robust 

and generalizable models across a spectrum of 

healthcare environments, as demonstrated by its 

deployment in under-resourced areas for 

diabetic retinopathy diagnosis [41,42]. The 

integration of DP/FL paradigms has emerged as 

a significant area of scholarly inquiry, especially 

in the realm of medical applications where the 

sensitivity of data is of utmost importance. 

Figure 4 timeline diagram showing the 

introduction of key frameworks and 

breakthroughs (e.g., FL in 2016, DP-FedAvg in 

2017, PATE in 2018, Flower in 2020, async FL 

in ICU use-cases by 2021–2023). The research 

conducted on hierarchical differential privacy 

serves as a prime illustration of the utilization of 

contextual aware privacy budgets, successfully 

attaining high accuracy in federated oncology 

models while adhering to rigorous privacy 

constraints for populations classified as high-

risk. DP-enhanced federated transfer learning 

framework for the classification of pediatric 

diseases, achieving over 87% accuracy despite 

challenges posed by dataset imbalances and 

complying with HIPAA-level privacy 

regulations [43]. The challenge of balancing 

privacy and model performance is a recurring 

theme, with various studies proposing 
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innovative solutions. To maximize privacy 

protection without sacrificing accuracy, Liang 

and Chen's architecture, for example, uses 

adaptive privacy budgeting and dynamic 

threshold clipping [35]. The development of 

federated edge-AI infrastructures has also led to 

an evolution in real-time analytics. For instance, 

the FLARE-Health project (2023–2025) 

integrated wearable sensor data with hospital 

electronic medical records (EMR) to implement 

hybrid federated models for cardiovascular 

event prediction across rural clinics. This 

initiative merges information from wearable 

devices and electronic medical records, 

achieving an average F1-score of 88.3% along 

with a prediction latency of under 800 

milliseconds. These findings have been 

validated across five different countries. By 

implementing adaptive update scheduling and 

prioritizing clients, these systems establish a 

benchmark for scalable and robust federated 

learning systems in environments with limited 

resources, ensuring they remain resilient amidst 

unpredictable network conditions [44]. The 

FedEDFA methodology, which combines FL 

with a meta-heuristic optimization algorithm to 

increase system resilience and achieve a 

prediction accuracy of 98.3% [45], 

demonstrates how federated learning with 

Internet of Medical Things (IoMT) devices is 

crucial for protecting data privacy while 

guaranteeing accurate disease predictions. Even 

in situations without centralized data 

dissemination, Table 2 shows that FL achieves 

improved diagnostic efficacy across a wide 

range of healthcare applications. A maximum 

Dice Similarity Coefficient (DSC) of 89.85% 

was attained by segmenting brain tumors using 

the U-Net architecture on the BraTS dataset, and 

the model's generalizability was further 

improved by applying data augmentation 

approaches. In the context of COVID-19 

detection, FL frameworks that leverage residual 

networks and self-supervised learning 

methodologies attained accuracies exceeding 

93%, with one investigation incorporating 

homomorphic encryption alongside Bootstrap 

Your Own Latent (BYOL) to achieve an 

impressive accuracy of 97.19%, all while 

ensuring the protection of user privacy. The 

effectiveness of differential privacy techniques, 

including PATE (ε < 1) and DP-FedAvg (ε ≈ 5), 

to preserve patient anonymity with minimal 

utility deterioration was validated by their 

impressive performance levels (88–90% 

accuracy). These findings substantiate that the 

amalgamation of FL with privacy-preserving 

methodologies, including differential privacy 

and encryption, constitutes a robust, secure, and 

scalable paradigm for contemporary healthcare 

artificial intelligence. The approaches and 

materials employed in framing IoT-enhanced 

ICU care for remote and critical patient 

monitoring are outlined in this section. This 

encompasses a discussion of the IoT devices and 

sensors utilized, the procedures for data 

communication and examination, the plan and 

execution of the deep learning model, as well as 

the framework proposed for the study. 
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Figure 4. Evolution of FL + DP in Healthcare Research2016–2024). 

Table 1. Comparative summary of centralized, decentralized, and FL-DP approaches in healthcare AI. 

 

Approach Privacy 

Protection 

Model 

Accuracy 

Scalability Compliance 

(HIPAA/GDPR) 

Typical Use Cases 

Centralized 

ML [46] 

Low (requires 

raw data 

sharing) 

High Limited (single 

server) 

Often non-

compliant 

Hospital-level 

diagnostics 

FL [47]  Medium (no 

raw data 

sharing) 

~90–95% of 

centralized 

Moderate to 

high 

Better compliance 

potential 

Multi-hospital 

collaboration 

FL + DP [48] High (formal 

privacy 

guarantees) 

Slight drop 

(~5–15%) 

High with edge 

computing 

Strong (ε-based 

guarantees) 

ICU monitoring, 

remote diagnostics 
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The investigations presented in Table 1 

elucidate the manner in which  FL-DP cater to a 

variety of healthcare objectives. The 

segmentation of brain tumors based on the 

BraTS dataset prioritized cross-institutional 

learning while ensuring minimal degradation in 

accuracy, whereas the classification of COVID-

19 underscored the necessity for rapid 

convergence alongside the preservation of 

patient privacy in diagnostic processes. The 

prediction of patient readmissions utilizing the 

MIMIC-III database illustrated that substantial 

privacy protections (ε ≈ 5) can be attained while 

concurrently achieving accuracy levels 

exceeding 90%, thereby facilitating practical 

implementation in real-world settings. 

Collectively, these results signify progress in the 

domains of generalizability, operational 

efficiency, and the ethical stewardship of data. 

 

Table 2. Comparative summary of FL and DP applications in healthcare across various tasks and performance outcomes. 

 

Ref Healthcare 

Task 

Privacy 

Method 

Dataset Architecture Performance 

Outcome 

Key Contributions 

[49] Brain tumor 

segmentation 

- BraTS  U-Net 89.85 % of 

centralized DSC 

Cross-institutional 

FL viability 

[50] Brain tumor 

segmentation 

- BraTS U-Net  52.6% (dice scores 

of 0.858 for whole, 

0.775 for core and 

0.647 for enhancing 

tumor) 

Preventing 

overfitting through 

data augmentation 

[51] COVID-19 X-

ray 

classification 

- COVID-19 

Chest X-

ray 

Database 

Residual 

networks  

 93.9%, 92.1%, 

92.8% and 94.7% 

Reducing the 

convergence time of 

the global model by 

about 30 minutes 

[52] COVID-19 

classification 

from lung CT 

scans 

- Three 

hospitals 

Self-supervised 

learning 

97.19%, a precision 

of 97.43%, and a 

recall of 98.18% 

Privacy-preserving 

FL-SSL framework 

with high diagnostic 

accuracy 

[53] Medical image 

classification 

PATE (ε 

< 1) 

Private 

dataset 

linear regression 

(second-order 

methods) 

88% accuracy Strong DP with 

acceptable utility 

[54] Hospital 

readmission 

prediction 

DP-

FedAvg 

(ε ≈ 5) 

MIMIC-III DP-FedAvg 

method 

>90% accuracy Balanced privacy-

utility trade-off 

 

 

4. Differential Privacy in Federated Deep 

Learning 

In federated healthcare systems, the 

incorporation of differential privacy is 

imperative for the protection of patient-level 

data throughout decentralized model training, 

thereby addressing both ethical considerations 

and legal requirements such as those delineated 

in HIPAA and GDPR. Federated Learning 

fundamentally bolsters privacy by retaining data 

on local devices; however, it remains vulnerable 

to privacy infringements via model gradients, 

which necessitates the implementation of DP to 

furnish formal privacy assurances by ensuring 

minimal influence on model output resultant 

from the inclusion or exclusion of any 

individual’s data [33].  

The trade-off between privacy and utility 

in FL using DP becomes clear when modifying 

the privacy budget (ε). For instance, setting ε to 

1.0 allows a model to reach 90% accuracy (high 

utility) but offers limited privacy protection. 

Lowering ε to 0.5 achieves moderate privacy 

while accuracy drops to 85% and decreasing ε 

further to 0.1 enhances privacy but reduces the 

model's accuracy to 75%. This flexible strategy, 

where ε is modified according to data sensitivity 

and privacy needs, strikes a balance between 

data security and model effectiveness, ensuring 

adherence to privacy laws like HIPAA and 

GDPR without greatly sacrificing predictive 
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accuracy [35,55]. Case studies indicate that the 

precision of models fluctuates in accordance 

with the privacy budget (ε): DP-FedAvg applied 

to MIMIC-III sustained an accuracy exceeding 

90% at ε approximately equal to 5, whereas an ε 

value of 0.1 in imaging tasks resulted in a 

reduction of accuracy by as much as 15% [56]. 

In the field of genomics, the implementation of 

Gaussian Differential Privacy achieved an 

accuracy rate of 88.5% at ε equal to 1.0. These 

findings underscore the critical significance of 

calibrating ε to achieve an equilibrium between 

privacy and utility in healthcare applications 

[57]. 

 DP can be operationalized through either 

Central Differential Privacy (CDP) or Local 

Differential Privacy (LDP). CDP introduces 

noise at the aggregation server, which proves 

effective when a trusted server is available, 

whereas LDP perturbs data prior to 

transmission, thereby offering enhanced 

security, even though at the cost of performance 

[17]. The utilization of noise mechanisms such 

as Laplace and Gaussian noise is essential, with 

Gaussian noise being particularly advantageous 

for deep learning under (ε, δ)-DP, especially 

within healthcare contexts where model 

precision is paramount [58,59]. Gradient 

clipping is a prevalent technique employed to 

constrain each client’s contribution before the 

addition of noise, and privacy accounting 

methodologies such as the Moments Accountant 

or Rényi DP are utilized to oversee cumulative 

privacy loss [60]. Recent innovations have 

proposed novel DP mechanisms, including the 

dissemination of random seeds among clients to 

generate perturbations, thereby permitting 

clients to mitigate noise impacts and restore the 

original global model, thus upholding privacy 

without sacrificing performance. Furthermore, 

adaptive differential privacy strategies have 

been devised to optimize the noise scale and 

allocate privacy budgets, thereby enhancing 

privacy management while preserving model 

accuracy, as evidenced in medical imaging 

applications [61]. These methodologies 

underline the persistent endeavors to reconcile 

privacy with utility in federated healthcare 

systems, ensuring adherence to regulatory 

frameworks while facilitating effective 

collaborative model training [62]. 

Survey articles pertaining to DP serve to 

condense the diverse methodologies, optimal 

practices, and prospective avenues for further 

investigation that are requisite. Table 3 presents 

the principal applications of FL-DP within the 

healthcare sector. While centralized models 

attain optimal accuracy levels, they are deficient 

in terms of privacy considerations and 

adherence to regulatory standards. Conversely, 

FL-DP frameworks establish a harmonious 

equilibrium by providing formalized privacy 

assurances and decentralized scalability, 

although this may result in a marginal decline in 

performance metrics. This examination 

highlights the significant practical implications 

of FL-DP in the context of real-world healthcare 

applications, wherein the dual concerns of data 

sensitivity and interoperability are of utmost 

importance. It encompasses a variety of fields 

including ophthalmology, psychiatry, 

genomics, radiology, and intensive care, each 

utilizing privacy-preserving techniques that 

incorporate Gaussian or Laplace noise. 

Nevertheless, additional scholarly inquiry is 

essential to comprehensively grasp the 

compromises linked with particular 

applications, such as the extent of utility 

degradation that may occur at specified levels of 

privacy. In the year 2022, a federated model 

designed for the detection of diabetic 

retinopathy, employing Gaussian DP with the 

parameters ε = 4 and δ = 1e-5, accomplished a 

remarkable accuracy of 90.1% whilst preserving 

a negligible loss of utility [63]. In genomic 

analysis, the use of DP with an epsilon value of 

1.0 has demonstrated an accuracy of 88.5%, 

effectively balancing the trade-off between data 

utility and privacy protection [64]. The 

application of adaptive ε-scaling methods in 

predicting ICU readmissions from multimodal 

EHR data, achieving a recall of 92.3% while 

dynamically tuning noise levels [65].
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Table 3. Recent advancements and applications of federated deep learning with differential privacy in healthcare, 

focusing on performance outcomes and privacy-preserving techniques. 

Ref Task Application 

Domain 

Privacy 

Mechanis

m 

Noise 

Type 

Dataset 

Type 

Performance 

Outcome 

Remark 

[66] Diabetic 

retinopathy 

screening 

Ophthalmology Gaussian 

DP (ε = 4) 

Gaussian Retinal 

images 

90.1% 

accuracy 

Low utility 

loss with 

visual 

imaging 

[67] Mental 

health 

outcome 

prediction 

Psychiatry Laplace DP 

(ε = 1.2) 

Laplace Clinical 

notes 

86.4% AUC Retained 

performanc

e under 

moderate 

privacy 

[68] Rare disease 

genomic 

analysis 

Genomics Gaussian 

DP (ε = 1.0) 

Gaussian Gene 

sequences 

88.5% 

accuracy 

Strong DP 

with 

minimal 

data 

leakage 

[69] COVID-19 

chest X-ray 

classificatio

n 

Radiology Local DP (ε 

= 1.0) 

Gaussian Public 

imaging 

dataset 

88.7% 

precision 

Enabled 

real-time 

FL across 

hospitals 

[70] ICU 

readmission 

prediction 

Intensive Care Adaptive ε-

scaling 

Gaussian/

Laplace 

Multimodal 

EHR 

92.3% recall Dynamic 

privacy 

tuning by 

data 

modality 

 

 5. Real Time Monitoring Rule-based IoT 

Sensor Node 

Remote patient monitoring utilizes IoMT 

technology and blockchain frameworks to 

facilitate the acquisition of real-time health data 

while ensuring the provision of secure and 

transparent medical services. The 

IoT/blockchain framework provides improved 

security and transparency in real-time 

monitoring, it encounters multiple limitations, 

especially concerning scalability. To ensure a 

robust integration of edge computing and 

blockchain technologies within IoMT-based 

healthcare systems, it is imperative to rigorously 

assess their practical performance across critical 

parameters. Essential metrics such as latency, 

energy consumption, and security throughput 

must be systematically evaluated to substantiate 

the efficacy of these technologies in real-time, 

resource-constrained environments. The 

incorporation of such evaluations not only 

corroborates their practical viability but also 

yields actionable insights for the optimization of 

deployment architectures in clinical applications 

[71]. As the quantity of connected devices rises, 

the data volume can overwhelm both network 

and storage resources. Moreover, the 

decentralized aspect of blockchain may result in 

increased transaction costs and delayed 

processing times, potentially affecting real-time 

performance in extensive deployments. These 

issues necessitate continual optimization of 

blockchain protocols and network infrastructure 

to maintain effective data management and 

system scalability in evolving healthcare 

settings [72,73]. In [74], a remote patient 

monitoring system that utilizes IoT nodes and 

blockchain technology to aggregate and secure 

real-time health information, particularly in the 

context of critical care. The IoT nodes, which 

are integrated with a Raspberry Pi [75] (a Linux-

based platform featuring a 40-pin GPIO), are 

outfitted with sensors for blood glucose (BG), 

body temperature (BT), and blood pressure 

(BP). Blood glucose levels are assessed using a 

glucose strip connected via an OPA2134 

operational amplifier, body temperature is 

recorded utilizing a calibrated DS18B20 digital 

sensor, and blood pressure is monitored through 

an MPS20N0040D-D MEMS pressure sensor, 
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which is subsequently amplified by an LM358 

operational amplifier. The system documents 

sensor outputs in the units of mg/dL (for BG), 

°C (for BT), and mmHg (for BP), which are 

subsequently transmitted to a blockchain 

network to enhance transparency and foster 

trust. In order to elucidate the amalgamation of 

blockchain technology and rule-based artificial 

intelligence within remote healthcare systems, 

we draw upon the architectural framework 

delineated by V. Puri et al. [54], which is 

illustrated in Figure 5. Figure 5a represents a 

three-tiered rule -based smart contract is 

implemented to oversee device authentication, 

categorize health conditions in accordance with 

established thresholds (BG <140 mg/dL, BT 

36.1–37.2°C [76], BP <120/80 mmHg), and 

identify invalid, missing, or zero sensor 

readings.  

The clinic node functions as a facilitator 

between healthcare institutions and Internet of 

Things (IoT) nodes, thereby streamlining the 

processes of patient registration and the 

synchronization of medical data through 

blockchain technology to promote trust and 

transparency [77-79]. Conventional systems 

encounter obstacles such as fragmented patient 

records, redundant laboratory tests, insufficient 

secure data sharing, and suboptimal 

management of health records. The 

incorporation of blockchain technology 

mitigates these challenges by permitting clinics 

to access and amend patient histories via a 

distributed ledger. Within this investigation, 

clinic nodes establish connections with hospital 

nodes to obtain personal health records (PHR), 

react to notifications from remote IoT sensor 

nodes, and provide timely medical assistance. A 

rule-based artificial intelligence smart contract 

regulates the operations of clinic nodes (Figure 

5b), encompassing three fundamental functions: 

(1) authentication through the utilization of 

device ID (Did), public key (Pb), contract 

address, and Application Binary Interface 

(ABI); (2) acquisition of patient records by 

transmitting patient ID (Pid) and Pb to the 

blockchain; and (3) modification of medical 

data by submitting Pid, Pb, and updated 

information, with contract address and ABI 

verification ensuring secure interactions.  

Hospitals bear the responsibility of 

overseeing patient care and delivering services 

during both critical emergencies and routine 

visits; however, they frequently hesitate to 

disseminate medical data with other entities 

owing to concerns related to trust, privacy, and 

transparency. This deficiency in data 

interchange can result in delays in essential 

treatment, particularly in emergencies where 

access to a patient's medical history is crucial. 

Given that patients generally exhibit a 

preference for visiting clinics rather than 

hospitals, robust synchronization between these 

two entities is imperative. To mitigate these 

issues, the application of blockchain technology 

is proposed to facilitate trust, transparency, and 

the secure exchange of medical data. In the 

present study, a rule-based artificial intelligence 

smart contract (Figure 5c) is implemented at the 

hospital node, encompassing four primary 

functions: (1) Create Pid – the hospital transmits 

patient information (e.g., name, address, contact 

details) along with the smart contract address 

and ABI; should this information not correspond 

to existing records, a new Patient ID (Pid) is 

established; (2) Create Did – an IoT device is 

registered by submitting unique identifiers (e.g., 

MAC address, manufacturer, sensor 

information); if the device is not previously 

registered, a Device ID (Did) is generated; (3) 

Update patient/device data – subsequent to Pid 

verification, updated information regarding the 

patient or device is submitted and 

acknowledged; (4) Final data upload – 

following Pid validation, new or amended 

patient data is uploaded to the blockchain, 

accompanied by confirmation of successful 

storage.  

While this examination amalgamates 

architectural and theoretical advancements, 

empirical confirmation continues to be an 

essential subsequent measure. In order to direct 

forthcoming inquiries and enhance replicability, 

we advocate for a benchmarking framework 

aimed at assessing FL-DP-IoMT systems within 

practical healthcare contexts. Table 4 delineates 

appropriate datasets, critical evaluation metrics, 

and experimental design factors for prospective 

implementations. 
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Table 4. Recommended experimental benchmarking framework for future FL-DP-IOMT healthcare studies. 

 
Component Recommendation 

Datasets MIMIC-III (ICU readmission), BraTS (brain tumor segmentation), COVID-Xray, 

SEER 

Evaluation 

Metrics 

- Model Accuracy (%)- Privacy Leakage (ε-value)- Communication Cost 

(KB/round)- Convergence Rate (rounds to threshold accuracy)- Energy Consumption 

(if edge devices used) 

Experimental 

Design 

Simulated or real-world federated settings with non-IID data using frameworks 

like PySyft, Flower, or FATE 

Performance 

Benchmarks 

Targeting ≥ 90% of centralized accuracy, ε ≤ 1 for strong DP, minimized 

communication load, fast convergence 

Use Case 

Domains 

ICU monitoring, medical image classification, chronic disease prediction, 

wearable-based diagnostics 

 

 

6. Challenges and Open Research Problems 

In light of the significant advancements 

witnessed in FL/DP within the healthcare 

domain, numerous pivotal challenges remain. A 

primary issue pertains to the data heterogeneity 

and non-IID (non-independent and identically 

distributed) attributes prevalent among hospitals 

or devices. Addressing non-IID (non-

independent and identically distributed) data 

poses a significant challenge in FL, particularly 

in healthcare, where data can differ greatly 

among institutions. Techniques like FedProx 

alleviate this challenge by incorporating a 

proximal term into the objective function, 

enhancing the global model's resilience to local 

data heterogeneity. By normalizing client 

updates and taking into account the volatility in 

local data distributions, FedNova efficiently 

addresses statistical heterogeneity and increases 

FL efficiency [80,81]. By tailoring global 

models to each client's distinct data 

characteristics, personalized FL approaches—

like Meta-Fed and PerFed—further enhance 

model performance and increase accuracy and 

relevance in decentralized healthcare settings. 

The optimum approach to strike a compromise 

between model generalization and 

customization in FL for healthcare use cases 

may be found by evaluating these approaches 

[82]. Significant variation exists in the quality, 

modality, and sampling frequency of medical 

data, which causes client drift and impedes 

model convergence. 

By employing techniques such as 

quantization and sparsification for model 

compression, we can effectively minimize the 

volume of model updates sent between devices 

and the central server, which helps tackle 

communication overhead. Additionally, 

asynchronous communication methods can 

reduce waiting times and increase efficiency. 

Maintaining cumulative privacy budgets may be 

effectively achieved by using dynamic privacy 

budgets, in which we track and modify each 

client's privacy loss based on the sensitivity of 

the data. To ensure that privacy promises are 

maintained without compromising model 

performance, this may be further strengthened 

by applying sophisticated privacy accounting 

tools, like Moments Accountant, to accurately 

measure and control cumulative privacy loss 

across several training rounds [83,84]. In FL-DP 

systems, ethical factors—such as algorithmic 

bias and fairness—represent crucial but usually 

disregarded components. Existing healthcare 

imbalances may be exacerbated by models that 

are created using skewed or unrepresentative 

datasets because they may show varying degrees 

of efficacy across different demographic or 

socioeconomic groups.  
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Figure 5. Rule-based AI smart contracts for remote healthcare system nodes. (a) Smart contract logic for the Remote Sensor 

Node, detailing device authentication, sensor data validation (blood glucose, body temperature, and blood pressure), and 

identification of incorrect or malicious data inputs. (b) Smart contract logic for the clinic node, including node 

authentication, retrieval of patient medical records, and update of patient health data. (c) Smart contract logic for the 

hospital node, covering patient and device ID creation, patient and device data updates, and hospital node authentication. 

Reprinted from V. Puri et al. [74]
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Furthermore, the possibility of accountability is 

severely hampered by the absence of widely 

recognized fairness indicators and open auditing 

procedures. To ensure fair and responsible 

application in clinical settings, fairness 

assessments must be incorporated into future 

research [85,86]. This variability is difficult for 

traditional optimization strategies to manage, 

leading to skewed or less generalizable global 

models. This situation emphasizes the necessity 

for adaptive aggregation and customized FL 

methods that are adapted to the distinct data 

distributions of each client [87]. 

Furthermore, the application of FL in large 

hospital networks is severely limited by the 

scalability and communication inefficiencies. 

Bandwidth is strained by the frequent 

transmission of model parameters, especially 

when dealing with high-dimensional medical 

data like genetic information or CT scans. 

Despite the fact that techniques like quantization 

and sparsification have been put forth, their 

performance often suffers as a result. 

Furthermore, achieving stable and rapid 

convergence becomes increasingly challenging 

with a multitude of clients and inconsistent 

participation. Personalization strategies, 

including fine-tuning or meta-learning, facilitate 

the adaptation of global models to local 

contexts; however, they frequently exhibit a 

lack of consistency and standardization within 

clinical environments [88]. 

         The integration of DP into practical FL 

frameworks presents its own set of obstacles. 

The meticulous calibration of noise to ensure 

privacy preservation while simultaneously 

maintaining utility is a complex endeavor, 

particularly when addressing multiple data 

modalities and markedly imbalanced datasets. 

While local DP provides enhanced protection, it 

adversely affects model performance [89]. 

Additionally, numerous extant studies neglect to 

account for the cumulative privacy budget 

across successive training rounds, thereby 

engendering risks of privacy leakage [90]. 

Another significant limitation is the absence of 

real-time, large-scale FL benchmarks in the 

healthcare sector. The majority of research 

relies on small-scale public datasets that fail to 

accurately represent real-world scenarios, 

including missing values, streaming data, or 

constraints related to clinical decision-making. 

There exists an urgent requirement for open-

source frameworks, longitudinal testbeds, and 

privacy-aware simulators to validate FL-DP 

frameworks on a larger scale [91]. Addressing 

these challenges will be critical for the 

development of secure, scalable, and clinically 

applicable FL systems in the realm of precision 

medicine. 

       Despite the widespread emergence of FL-

DP frameworks, the majority remain 

predominantly restricted to controlled 

environments, exhibiting limited applicability in 

real-world settings. Numerous frameworks 

exhibit a deficiency in their integration with 

established clinical systems, encounter 

difficulties with heterogeneous and incomplete 

datasets, and confront scalability challenges 

stemming from resource limitations and 

network instability. Although blockchain-

enabled architectures enhance security 

measures, they frequently introduce latency and 

impose significant computational overhead. 

Moreover, scant research investigates the 

adoption of these systems by clinicians or their 

long-term reliability. These constraints 

underscore a persistent disparity between 

theoretical frameworks and the development of 

practical, scalable solutions within the 

healthcare sector [92]. 

        Data imbalance and missing data are 

ubiquitous in actual healthcare datasets; 

however, they continue to be inadequately 

addressed within contemporary FL-DP 

frameworks. Asymmetrical class distributions, 

exemplified by infrequent disease instances or 

marginalized demographics, have the potential 

to skew models towards prevalent classes, 

thereby diminishing diagnostic accuracy. In a 

similar vein, the presence of absent data 

attributable to inconsistent record-keeping or 

sensor malfunctions can impair model efficacy 

and hinder convergence. Therefore, it is 

imperative that resilient imputation 

methodologies, weighted loss functions, and 

adaptive sampling strategies are integrated and 
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rigorously assessed in forthcoming research 

endeavours [93,94]. 

7. Conclusion 

This review offers an extensive 

synthesis of FL/DP specifically within the 

framework of real-time, secure, and scalable 

artificial intelligence systems in healthcare. In 

contrast to prior reviews that predominantly 

concentrate on either FL/DP in a segregated 

manner, our study distinctively amalgamates 

both frameworks while underscoring practical 

implementation through edge computing, 

blockchain technology, and infrastructures 

associated with the Internet of Medical Things 

(IoMT). The manuscript makes a significant 

contribution by delineating regulatory 

compliance with HIPAA, GDPR, and HL7, 

advocating for benchmarking methodologies, 

and accentuating domain-specific latency 

constraints necessary for achieving real-time 

efficacy. Through comparative evaluations, 

meticulously curated tables, and architectural 

analyses, this study provides a definitive 

roadmap for researchers and practitioners 

aspiring to deploy privacy-preserving AI 

solutions within decentralized healthcare 

ecosystems. 

Notwithstanding its comprehensiveness, 

the review is not without certain limitations. It 

does not encompass a thorough meta-analysis of 

model efficacy across various studies utilizing 

standardized metrics or cohesive datasets. 

Furthermore, although the paper elaborates on 

implementation frameworks and proposes 

benchmarks, it does not empirically validate the 

FL-DP systems examined, which may constrain 

the empirical rigor anticipated by some 

technical audiences. Additionally, while the 

dynamic challenges associated with deploying 

these systems in low-resource or heterogeneous 

healthcare environments are acknowledged, 

they are not extensively quantified. Addressing 

these deficiencies through longitudinal 

deployments, real-world simulations, and 

collaborative efforts across institutions remains 

a pivotal direction for forthcoming research. 

Future investigations ought to delve into 

adaptive privacy mechanisms, including privacy 

amplification through subsampling and 

dynamic noise scaling, in order to enhance the 

equilibrium between privacy and utility across a 

variety of healthcare contexts. The improvement 

of scalability via effective federated averaging 

methodologies, such as FedProx, FedNova, and 

asynchronous aggregation, has the potential to 

considerably diminish communication overhead 

while enhancing convergence. Furthermore, 

empirical case studies of cross-institutional 

deployment—especially within resource-

limited or multi-hospital settings—are crucial 

for substantiating the robustness and 

interoperability of Federated Learning with 

Differential Privacy (FL-DP) systems. Such 

initiatives will not only facilitate the 

reconciliation of theoretical frameworks with 

practical applications but also expedite the 

secure and ethical integration of artificial 

intelligence into clinical practices. 
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