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Wire EDM plays a vital role in the precision machining of hard-to-cut materials, but its 

efficiency depends on the optimal selection of parameters. The influence of machining 

parameters on WEDM quality for Stainless Steel 202. This study integrates Taguchi’s 

L9 orthogonal design with machine learning (ML) to optimise and predict surface 

roughness (SR) outcomes. ANOVA revealed peak current as having a significant impact 

on machining quality, with a moderate non-significant effect from pulse on time; wire 

speed and pulse off time had minimal effect. Increased peak current and pulse on time 

result in higher discharge energy, which generates deeper craters on the workpiece 

surface, thereby leading to increased surface roughness. To boost predictive accuracy, 

three ML models—Random Forest (RF), Artificial Neural Network (ANN), and Support 

Vector Machine (SVM)— were evaluated by using k-fold cross-validation in addition 

to the conventional 80/20 train-test split. RF achieved the highest prediction accuracy 

(R² = 0.931), followed by ANN (R² = 0.918) and SVM (R² = 0.810). This approach 

minimises experimental efforts and enhances machining precision. The findings suggest 

that combining statistical tools with ML can streamline WEDM processes, improve 

surface quality, and reduce defects. Future work may focus on real-time control systems, 

hybrid optimisation, and deep learning models for further improvement  
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1. Introduction  

As a present-day non-conventional 

machining method, wire repeatable electric-

discharge machining (WEDM) has been 

extensively utilised, thus the complex shape of 

modern materials such as super alloys, 

composite materials, HSS, and conductive 

ceramics. This is essential for the manufacture 

of components with high-density materials in 

aerospace, automotive, mould-making and 

surgical tools industries, where the precise 

processing of electrically conductive materials 

by thermal energy is a must. WEDM workpieces 

submerge within a dielectric fluid pattern, where 
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controlled electrical discharge or sparks occur 

between a wire electrode and the work material 

itself. This technique allows for high-precision 

erosion of material, allowing for detailed and 

complex cuts that would otherwise be difficult 

to achieve with traditional machining processes. 

WEDM has become a CNC-based technology; 

however, the cutting mechanism is highly 

complex and non-linear, and establishing and 

settling optimal parameters is hard. Finding the 

right machining conditions usually takes lots of 

time and trial and error. 

Moreover, several factors affect material 

removal rate (MRR) and surface roughness (SR) 

in WEDM, making it difficult to accurately 
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perform the modelling of the effect of process 

parameters on machining performance. 

Improving process efficiency and precision is a 

significant goal as WEDM technology 

continues to evolve. Implementing state–of–

the–art computational modelling and 

optimisation methods is essential for alleviating 

current limitations and enhancing the accuracy 

and performance of this important machining 

process [1]. Process parameters like pulse-on 

time, pulse-off time, corner servo voltage, wire 

feed, and wire tension affect WEDM 

performance by directly affecting MRR, spark 

gap, and SR. The best choice of parameter 

settings is critical to improving the efficiency 

and accuracy of WEDM [2]. 

It is an unconventional machining process 

in which controlled electrical discharges are 

used to remove material. It uses a soft tool 

electrode to wear away harder materials, 

gradually vaporising the workpiece [3]. A 

dielectric fluid removes the debris created from 

the process, providing a stable machining 

environment. Since Electric Discharge 

Machining(EDM) technology is widely used for 

machining complex geometries and hard metals, 

it is also particularly effective for applications 

requiring small, high-aspect-ratio holes [4]. 

EDM, specifically die-sinking EDM, is 

commonly used to manufacture tooling, dies 

and complex cavities. The performance of both 

EDM and WEDM is highly dependent on 

accurate control of process parameters for 

precision, productivity, and superior machining 

quality [5]. With the advancement of technology 

and the requirement for materials that can 

function reliably in intense conditions, the 

demand for stainless steel has increased rapidly. 

As industries demand a more excellent range of 

performance, effective machining of these 

materials becomes critical. Conventional 

traditional machining techniques, however, 

usually fail to reach the desired goals regarding 

performance, tool wear, finish, and productivity. 

The advent of unconventional machining 

processes like WEDM can address this problem 

[6]. Has come out to be a suitable replacement 

for machining stainless steels, as these parts 

need to meet high dimensional tolerances and 

complex geometries that are sometimes seen in 

aerospace applications. Utilising electrical 

discharges, this innovative machining method 

removes material from the workpiece, enabling 

precision machining of tough materials without 

the need for direct contact, which leads to tool 

wear [7]. 

The present work researches the influence 

of machining parameters on WEDM quality for 

annealed SS 202. The main factors studied 

include pulse on time, pulse off time, peak 

current, and wire speed, with an emphasis on the 

surface roughness of cut specimens. Empirical 

models to characterise surface roughness 

concerning process parameters are developed 

through ANOVA and regression analysis, 

which reveal the dominance of peak current as a 

significant factor for SR. Compared to 

traditional machining processes, only a few 

studies have investigated the impact of 

parameters on complex parts with different 

cutting speeds, which might have an impact on 

the efficiency of manufacturing on SS 202 in 

the automotive industry and the high-

performance area of the industry. While WEDM 

offers several recognised advantages, a gap still 

exists in the current literature, especially when 

it comes to the machinability of superalloys and 

the influence of the different machining 

parameters on responses like MRR and surface 

integrity. The review explored machining 

superalloys compared to the wealth of literature 

surrounding more general materials [8]. As a 

result, mechanisms for optimising machining 

processes and practical approaches toward 

utilising these materials are limited. Hence, the 

WEDM of superalloys can be better understood 

through detailed investigations to benefit the 

field engineers. 

Modern engineering endeavours must 

achieve stainless steel components that provide 

more excellent machining performance using 

advanced techniques like WEDM. With 

growing innovations, material applications 

contemplate high performance and reliability, 

which are key factors in material selection. 

Henceforth, it is essential to understand how to 

process components of this nature, ensuring the 

right machining parameters [9]. The current 

study aims to establish a fundamental 

understanding of WEDM parameters that affect 
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the SR and surface integrity of stainless steel202 

alloys during machining and further advance 

this knowledge to utilise high-performance 

materials effectively. The research 

understanding would expand and serve as a 

practical aspect of machining stainless steel in 

high-performance environments, thus 

contributing to the realm of applied research and 

industrial applications [10]. Various modelling 

techniques and analytical techniques (e.g., 

Response Surface Methodology (RSM), Particle 

Swarm Optimisation (PSO), Support Vector 

Machine (SVM), regression analysis, and 

sensitivity analysis) have been widely used for 

evaluating the performance of EDM and 

WEDM for machining advanced materials [11]. 

They provide useful information on how to 

adjust machining parameters, what might 

enhance the quality of surface finish, etc. 

Different modelling approaches have been used 

to describe and predict machining behaviour 

across different research fields.  

The novelty of this study is in creating a 

hybrid modelling framework that combines the 

Taguchi L9 experimental design with machine 

learning algorithms, including Random Forest, 

Artificial Neural Network, and Support Vector 

Machine. This framework predicts surface 

roughness during WEDM of stainless steel SS-

202—a material for which very limited 

predictive modelling studies exist. In using k-

fold cross-validation for robust model 

assessment, we address this knowledge gap and 

show that there is a powerful synergy in 

combining statistical design with computational 

tools to improve prediction performance, reduce 

experimentation complexity, and assist in 

intelligent machining, adaptive process control, 

and cost-effective manufacture of difficult-to-

cut materials. 

2.  Literature review 

  A comprehensive review of prior research in 

the field has been conducted to understand the 

advancements and methodologies related to this 

study. The optimised WEDM parameters 

increase the machinability of SS304, which is a 

non-magnetic stainless steel known for its 

corrosion resistance. The MMR for brass wire is 

superior to that of zinc-coated wire. Pulse on 

time and pulse off time identified the optimal 

parameters for MRR and kerf reduction [12]. 

The capability of WEDM to the machine is to 

produce the complex shapes of parts with 

changing hardness.   Titanium alloys are 

complex to work with using traditional methods. 

Less pulse-on time and lower pressure 

ultimately grant a remarkable surface finish. 

Higher current improves surface smoothness 

and material outlet rate. WEDM process 

variables could be adjusted at the response 

surface level [13]. The influence of WEDM 

variables on surface texture and kerf width is 

explored in this investigation. Additionally, 

Grey relational analysis is employed to 

determine the optimal WEDM setting. Results 

of ANOVA show that the parameter pulse on 

time greatly influences surface roughness and 

kerf width [14]. Studies mainly focus on SR and 

MRR. WEDM is less utilised due to its complex 

nature. One of the best methods for optimising 

machining parameters is the Taguchi 

methodology. AISI D3 steel is widely used in 

industries. Improving surface finish and 

reducing roughness with optimal machining 

parameters for lowering the pulse off time, 

increasing surface craters and micro-damage 

[15].The optimisation of WEDM parameters for 

SS304. Coated brass wire showed higher MRR 

than uncoated. Coated brass wire improves the 

MRR significantly. Increasing pulse on time and 

current enhances MRR during WEDM [16]. 

Higher pulse off time and voltage reduce MRR. 

Grey relational analysis optimises WEDM 

process parameters effectively [12]. Investigate 

the hydrogen embrittlement in superalloys. It 

focuses on nickel, cobalt, and iron-based 

superalloys. It highlights dislocation 

movements and fracture surface analysis. 

Common themes include void and micro-crack 

formations. Nickel content influences hydrogen 

embrittlement in Fe-Ni-Cr superalloys—high-

pressure and temperature impact superalloy 

properties. Material factors affect hydrogen 

embrittlement severity [17]. The WEDM 

procedure on AISI 1045 steel involves using an 

ANN to forecast the MRR and SR. Key factors 

to consider are the pulse on time and pulse off 

time. The most effective parameters for 
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achieving the highest MRR have been 

determined. The pulse on time plays a vital role 

in the performance of SR and MRR metrics 

[18]. 

 Optimisation of surface integrity WEDM 

parameters was conducted using the Taguchi 

method. Increasing the pulse on time leads to 

higher SR, while decreasing the pulse off-time 

results in lower micro-hardness. The current 

influences both roughness and hardness. 

Notably, pulse off time has a significant impact 

on both SR and microhardness. During 

parameter optimisation, SR is minimised to 

achieve the target microhardness [19]. Various 

techniques, such as ANN, SVM, and Genetic 

Algorithm(GA), were employed to predict SR 

through WEDM parameter optimisation. The 

SVM model demonstrated an impressive 

99.9985% R-value performance, while GA 

optimisation yielded a superior result of 61.31% 

for surface roughness. Peak current plays a 

crucial role, contributing 60.21% to surface 

roughness. Key parameters leading to minimal 

SR were identified, with the best fitness 

objective value reaching 0.2685 [20]. 

 Using SVM models to predict 

electrochemical machining parameters such as 

MRR, SR, and the radial overcut. SVM 

outperforms both linear and quadratic 

regression models for prediction accuracy. In 

particular, the feed rate of the tool plays an 

essential role in determining machining 

responses, while MRR and SR in ECM 

operations are predicted well using SVM 

models. Regression models are used to study the 

relationship between input parameters and 

response, and the Gaussian radial basis kernel 

function plays a vital role in improving SVM 

prediction accuracy. The prediction 

performance of SVM is consistently superior to 

both linear and quadratic regression models, 

thereby ensuring proximity of predicted values, 

i.e., provided by the SVM model, to actual 

response values. The study also compared fuzzy 

logic and BP-ANN models concerning WEDM 

outcomes, revealing the superiority of BP-ANN 

over fuzzy logic in surface roughness evaluation 

[21]. Pulse-on time and spark gap voltage are 

identified as the primary parameters affecting 

surface roughness, while both pulse-on time, 

pulse-off time, and spark gap voltage 

collectively influence waviness. The Taguchi 

method was applied for experiment design and 

analysis, determining that the BP-ANN model is 

more accurate and dependable than the fuzzy 

model. Notably, surface roughness and 

waviness experience significant effects from 

pulse-on time, highlighting the impact of 

WEDM parameters on titanium alloy 

machining. Furthermore, an Adaptive Network-

Based Fuzzy Inference System (ANFIS) model 

was created to effectively predict surface 

roughness and material removal rate (MRR) 

during the WEDM process [22]. The research 

focused on optimising crucial machining 

parameters like taper angle, peak current, pulse-

on time, and pulse-off time to enhance 

machining efficiency and surface quality. 

Comparative analysis revealed that the ANFIS 

model surpassed traditional regression models 

in predictive accuracy. Moreover, a multi-

parametric optimisation strategy incorporating 

Grey Relational Analysis (GRA) was employed 

to reach optimal machining conditions, 

identifying the most beneficial combination of 

process parameters for enhanced WEDM 

performance. The results indicate that peak 

current and pulse-off time play critical roles in 

determining MRR, with higher peak current 

values leading to a significant increase in 

material removal. Conversely, surface 

roughness tends to improve with increasing 

peak current, while the dielectric flow rate has 

minimal impact on both surface roughness and 

MRR [23]. 

Investigate B4C-reinforced composites 

despite their superior stiffness and hardness. It 

also identifies fly ash as a cost-effective 

reinforcement, offering good wear resistance 

and other beneficial properties. The literature 

review explores various mathematical 

approaches for optimising machining 

parameters, focusing on the Grasshopper 

Optimisation (GHO) algorithm, which is 

compared against Particle Swarm Optimisation 

(PSO) and Moth-Flame Optimisation. The study 

utilises an L27 orthogonal array to analyse 

machinability by evaluating key output 

responses, including volume removal rate 

(VRR) and  SR. Additionally, ANOVA is 
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applied to determine the statistical significance 

of the process parameters, ensuring a 

comprehensive assessment of their impact on 

machining performance. Results show that the 

GHO algorithm surpasses other methods in 

maximising VRR and minimising SR, 

demonstrating the potential of evolutionary 

algorithms for optimising WEDM processes 

[24]. 

This research combines Taguchi’s method 

with machine learning algorithms to optimise 

and forecast the performance of WEDM 

processes. The primary objectives include 

optimising WEDM parameters and identifying 

key machining parameters affecting SR using 

the Taguchi methodology. Development of 

Predictive Models: Employ ANN, Random 

Forest (RF), and Support Vector Machine 

(SVM) to forecast machining outcomes. 

Assessing ML Model Accuracy: Evaluate and 

compare the predictive accuracy of ML models 

based on metrics such as Mean Squared Error 

(MSE), Mean Absolute Error (MAE), and R² 

(Coefficient of Determination).   

Current research has increasingly used 

machine learning in WEDM for the prediction 

of machining responses like surface roughness, 

with superior accuracy compared to traditional 

statistical models. Such predictive information 

not only holds significant value towards 

increasing model reliability but also towards 

real-world industrial applications. Through the 

estimation of surface roughness before 

machining, ML models assist in minimising 

material loss and ensuring first-pass quality. 

Parametric optimisation prolongs tool and wire 

life, reduces consumable expenses, and 

minimises downtime. Moreover, minimising 

trial-and-error experimentation reduces setup 

times and speeds up production cycles. These 

benefits are especially paramount in precision 

industries such as aerospace, biomedical, and 

automotive manufacturing, where better surface 

finish, close dimensional tolerances, and cost-

effectiveness directly determine 

competitiveness and sustainability.  

3. Methodology 

The experimental design in this study has 

been structured using the Taguchi method, a 

systematic technique for enhancing machining 

parameters while reducing the need for 

numerous experimental trials. The Design of 

Experiments (DOE) framework requires careful 

planning and precise mechanical configuration, 

and the Taguchi methodology provides similar 

structured measures at each DOE stage. By 

using this approach, the number of tests needed 

is significantly reduced while maintaining 

reliable results. Accordingly, to focus was solely 

on the actual response variable—surface 

roughness. The experimental setup followed an 

orthogonal array design, specifically the L9 

orthogonal array, which allows for a balanced 

evaluation of multiple parameters. The four 

primary process parameters selected for 

investigation were pulse on time (POT), pulse 

off time (PFT), peak current (IP), and wire 

speed, each tested at three different levels, as 

shown in Table 1. The experimental results, 

collected based on the Taguchi-designed layout, 

were further utilised as a dataset for machine 

learning applications. Regression-based 

machine learning models were utilised for 

surface roughness prediction, improving the 

accuracy and dependability of machining 

performance evaluation. 

Table 1: Controlled input parameters and levels 

 

Factor Process Parameter Level-1 Level-2 Level-3 

A Pulse on Time (POT)μs 32 35 38 

B Pulse off Time (PFT)μs 9 10 11 

C Peak Current (IP)A 2 4 6 

D Wire Speed (WS)m/min 92 94 96 
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3.1 Experimental setup 

As per DOE, machining trials were 

performed using an Ezeewin CNC WEDM , as 

shown in Figure 1. A 100×100×10 mm plate of 

Stainless Steel 202 (SS 202) was used as the 

workpiece for the experiments. SS-202 

comprises the following elements: (0.15%) of 

carbon, 17–19% (of) chromium, 4-6% (of) 

nickel, 75%10% of manganese, as well as 

0.25% (of) nitrogen as indicated in Table 1. SS 

202 is a good, cost-effective option due to its 

nickel-reduced grade; replacing some nickel 

helps with the strength of the final product, 

nitrogen, and manganese, making SS 202 

cheaper than SS 304. A molybdenum wire 

electrode measuring 0.25 mm in diameter was 

utilised for the experiments. The positive and 

negative polarities were applied to the 

workpiece and wire electrode, respectively, 

from the DC power source. Deionised water has 

been used as the dielectric material so that a 

stable machining environment is provided 

during machining. Deionised water was used as 

the dielectric fluid during machining, which was 

supplied at a pressure of 0.5 kg/cm² and a flow 

rate of around 4 L/min.The flushing was carried 

out continuously through the top and bottom 

nozzles, ensuring effective debris removal. 

The essential variable parameters 

considered in the study were pulse-on time 

(μs), pulse-off time (μs), peak current, and wire 

speed. Experiments were designed using the 

Taguchi L9 orthogonal array to facilitate the 

study of nine combinations of the parameters. 

To investigate machining performance, three 

points were measured for SR  along the length 

of the cutting channel after each test [25]. 

 
Figure 1. Experimental Set-up of  Ezeewin  CNC WEDM 

The Stainless steel, specifically 202 grades, 

was utilised in the shape of a thick rectangular 

plate. The chemical composition of 202 

Stainless steel consists of iron alloyed with 

chromium, nickel, and manganese. It has similar 

properties such as 202 stainless steel. The 202 

classification is highly durable in cold 

environments. This non-magnetic, chromium-

nickel–manganese alloy has superior corrosion-

resistant levels, making it the most used 

precipitation hardening grade, with high 

hardness and strength. There are also 

prominent characteristics located under this 

grade. The SS 202 can be used in various 

applications, including cooking utensils, 

railway vehicles, and types of stainless steel 202 

are used daily in kitchen utensils, automotive 

components, and some architectural 

applications where cost might be a concern [26]. 

The atmosphere is not particularly corrosive, 
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etc. A Mitutoyo surf-test surface roughness 

tester assessed the machined samples’ surface 

roughness. Each sample underwent evaluation 

three times, and the resulting mean values were 

computed. The surface roughness was evaluated 

using the equation shown in Equation 1.  

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 =
1

𝐿
∫ Zx ⟨dx⟩ (μm)

𝐿

0

       (1) 

Where Surface roughness (SR), measured in 

micrometres (μm), is determined based on the 

evaluation length (L) and the profile height 

function (Z(x)). The parameter L represents the 

length over which the surface roughness is 

assessed, while Z(x) defines the variations in 

surface profile height. Figure 2 shows that the 

Taylor Hobson Surtronic 3+  is used to measure 

surface roughness (Ra, Rz, Rt, Rp, Rv) as 

described in ISO 4287. The instrument's high 

accuracy and consistency are a diamond-tipped 

stylus with motorised traverse that displays 

repeatable readings on a 2.4-inch colour LCD. 

The output delivers ± 5 % accuracy, ± 2 % 

repeatability and has automatic calibration that 

is traceable to certified standards that measure 

the effects of process parameters on the surface 

roughness tester [27]. 

In this study, three supervised machine 

learning models, including ANN, RF and SVM 

models, were used to predict the surface 

roughness generated from WEDM parameters. 

Next, normalisation for uniform scaling is 

applied to the training data, and further tuning 

of model-specific parameters is performed. In 

order to reduce the bias in assessing the 

performance of models, a K-Fold cross-

validation approach was used. 

4.  Analysis of experimental data 

4 .1  S/N Ratio analysis for process 

optimisation 

The signal in Taguchi methodology 

represents an ideally desired response 

parameter (mean), and noise represents the non–

ideally desired response parameter (standard 

deviation). In this context, the signal-to-noise 

(S/N) ratio is used to study quality 

characteristics relative to the target value. The 

S/N ratios utilised include those designed for 

small, induced, and larger dimensions. Table 2 

shows the experimental results of surface 

roughness. The S/N ratio in equation 2 

represents surface roughness, a quality attribute 

in a specific type of machining where ‘smaller 

is better’. 

𝑆 𝑁 = −10log [
1

𝑛
(𝑦1

2 +  𝑦2
2+. . . … + 𝑦𝑛

2)]⁄           (2) 

The responses of the machining 

characteristic of a specific trial condition 

repeated n times can be denoted as y₁, y₂,..., yₙ. 

The S/N ratio is calculated using equation (2) 

for all nine trials. The calculation results and 

raw data values are represented in Table 2.  

 

Figure 2. SR measuring equipment (Taylor Hobson) 
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Table 2: Experiment plan with performance measured value. 

    

 Trial      Pulse on       Pulse off           Peak      Wire             Surface                      S/N ratio    

  no.         time              time               Current      Speed            Roughness                (db)                                        

                 (μs)             (μs)                (Amp)        (m/min)        (μm)                         

  1            32                 9                2                    92              3.66                          -11.26                        

  2            32                  10                     4                   94            3.78                         -11.54                        

  3            32                  11                     6                    96           4.40                         - 12.86                     

  4            35                  9                 4                    96            4.04                  -12.12                    

  5            35                  10                     6                    92            4.08                  -12.21                     

  6            35                  11                     2                    94              3.58                         -11.07                                        

  7            38                  9                 6                    94             5.06                  -14.08           

  8            38                 10                2                    96               3.84                  -11.68              

  9            38                 11                      4                    92             4.46                 -12.98           

 

 

4.2. Effect of process factors on the response 

variable 

The effects of process variables on the 

responses can be comprehended through the 

main effect graph, as shown in Figure 3. The 

effect of cutting parameters on the SR of SS 202 

reveals various characteristics post-WEDM, 

outlined as follows: 

When the current intensity remains 

constant, surface roughness increases with 

longer pulse durations as the current strength 

rises, leading to a more significant energy 

discharge. Which leads to a greater number of 

chips being dislodged and greater surface 

roughness. The surface structure is almost 

unaffected by using appropriate liquid 

circulation at high pressure. Surface roughness 

increases and decreases with an increase in the 

current and pulse duration to prevent the wire 

from breaking [10]. The wire speed used has a 

minimal impact on the surface roughness. In 

WEDM, however, the heat produced by the 

discharge energy melts and vaporises small 

surface pieces at the points of impact of the 

spark, thereby affecting the surface roughness. 

The peak current and pulse duration affect the 

surface profile, with current and pulse duration 

being the major contributing factors for the 

surface profile. A lesser current would generate 

fewer accretionary sparks, thus rendering the 

surface smoother because of an improved 

erosion effect. 

The average value of performance 

characteristics for each parameter at levels 1, 2 

and 3 is compiled as the mean response in Table 

3. The tables also include ranks using delta 

statistics, enabling comparisons of the effects’ 

relative magnitude. The delta statistic is the 

difference between each factor’s high and low 

average. The surface roughness of the 

specimens shows a general trend of decrease in 

its value according to the reduction in cutting 

parameters. Table 4 presents the computed 

average S/N (signal-to-noise) ratio for different 

parameters at various levels. The optimal level 

for each factor is identified as the one with the 

highest S/N ratio, which indicates the best 

conditions for the measured responses[28,29]. 

Based on the S/N ratio analysis shown in Figure 

4, the ideal machining parameters for 

minimising surface roughness are: a pulse on 

time of 35 μs (level 2), a pulse off time of 10 μs 

(level 2), a peak current of 2A (level 1), and a 

wire speed of 92 (level 1). 
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Table 3: Average Values (Raw Data: Surface Roughness )  

Process parameter 

Designation 

Average values of Surface Roughness 
Delta Rank 

L1 L2 L3 

A 3.947 3.900 4.453 0.553 2 

B 4.253 3.900 4.147 0.353 3 

C 3.693 4.093 4.513 0.820 1 

D 4.067 4.140 4.093 0.073 4 

 

 

Table 4: S/N Ratio Average Values (Raw Data: Surface Roughness) 

Process parameter 

Designation 

Average values of Surface Roughness 
Delta Rank 

L1 L2 L3 

A -11.90 -11.81 -12.92 1.11 2 

B -12.49 -11.82 -12.31 0.68 3 

C -11.34 -12.22 -13.06 1.71 1 

D -12.16 -12.24 -12.23 0.08 4 

 

 

Figure 3. Main effect analysis of means for SR (Raw Data) 

 

Figure 4. Main effect analysis of S/N Ratio for SR (S/N Data) 
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4.3 Statistical analysis of the experimental 

results 

In this study, variance analysis (ANOVA) is 

a statistical tool that objectively analyses 

differences in the mean performance of various 

test groups. Statistical analysis was performed 

using the ANOVA method to discuss how the 

machining parameters affect operational 

performance[18]. The study employed ANOVA 

to analyse the impact of machining parameters 

on cutting quality in WEDM. Table 5 displays 

the ANOVA results for SR and WEDM, 

highlighting the influence of different 

parameters on cutting quality. Notably, peak 

current intensity emerged as the most significant 

factor affecting surface roughness. This analysis 

involves comparing the mean square to 

experimental errors at a specified confidence 

level to assess the importance of main factors 

and their interactions. The total sum of squared 

deviations (SST)as shown in equation 3  from 

the overall mean Signal-to-Noise (S/N) ratio is 

computed, where n denotes the number of 

experiments in the orthogonal array, and nᵢ 

represents the mean S/N ratio for the iᵗʰ 

experiment. The P-value is calculated as shown 

in equation 4. 

𝑆𝑆𝑇 = ∑(𝑛𝑖 − 𝑛𝑚)

𝑛

𝑖=1

.2                                      (3) 

Here, n represents the total number of 

experiments in the orthogonal array, while nᵢ 

denotes the mean Signal-to-Noise (S/N) ratio for 

the iᵗʰ experiment. 

𝑃 =
𝑆𝑆𝑑

𝑆𝑆𝑇

                                                                                 (4) 

 

Table 5:  ANOVA of surface roughness 

 

Source DF Adj SS Adj MS F-Value P-Value 
Percentage  

Contribution 

Pulse on Time 1 0.38507 0.38507 4.26 0.108 21.64% 

Pulse off Time 1 0.01707 0.01707 0.19 0.686 0.96% 

Peak Current 1 1.00860 1.00860 11.16 0.029 56.68% 

Wire Speed 1 0.00686 0.00686 0.08 0.797 0.39% 

Error 4 0.36161 0.09040   20.32% 

Total 8 1.77920    100% 

The F-test [30], named after Fisher, is a 

statistical method utilized to assess the design 

parameters that have a significant impact on the 

quality characteristic. It assesses significance by 

comparing the mean square error with the 

residual error. Peak current was identified as the 

most influential factor in this analysis, 

contributing to 56.68% of the variation in 

Surface Roughness (SR), with a p-value of 

0.029, indicating statistical significance. Pulse 

on time has a moderate effect (21.64%) but is 

not statistically significant (p = 0.108). Pulse off 

time and wire speed have negligible impacts on 

SR. Figure 5 shows the Pareto Chart, which 

displays each process parameter’s contribution 

to the WEDM process. Peak current has the 

highest impact on SR. Pulse on time also 

contributes significantly. Pulse off time and 

wire speed have minimal effects. 
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Figure 5. Pareto chart process parameter’s contribution  

5. Discussion 

5.1 Statistical and ML-Based Predictive Models 

Multiple regression analysis was conducted 

in SPSS 16 to examine the relationship between 

surface roughness (SR) and independent 

variables. Moreover, an SPSS artificial neural 

network (ANN) was used to evaluate prediction 

accuracy. In addition, the study uses three 

supervised regression-based algorithms for 

surface roughness prediction. Models, such as  

ANN, Random Forests, and Support Vector 

Machines, were trained using R programming to 

validate their results. The dataset was split into 

two subsets: 80% for training and 20% for 

testing, along with k-fold cross-validation [31]. 

The feature importance analysis shown in 

Figure 5 above indicates that peak current was 

identified as the most significant factor 

influencing surface roughness, and the pulse on 

time had a reasonable effect. In contrast, pulse-

off time and wire speed had a minimal effect on 

the output. This insight helps to refine the 

prediction model by focusing on the most 

relevant machining parameters. 

5.1.2 Analysis of Residual Normality Using a P-

P Plot 

This analysis employed residual 

regression and a mathematical model to evaluate 

the model’s reliability. Figure 6 shows the 

Normal P-P plot, which evaluates the 

standardised residuals of the regression model, 

adhering to a normal distribution[11,33]. This 

conformity is a vital assumption in regression 

analysis. 

 
Figure 6. Normal P-P plot of regression standardised residual 
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The P-P plot examines the accumulated 

probability of the standardised residuals seen 

against the cumulative probability expected 

based on a normal distribution. Residuals are 

aligned well on the reference line, and the 

regression model is acceptable.  

5.1.3 Mathematical model for the experimental 

data 

In this work, a mathematical model was 

used to validate the experimental results from 

investigating the surface roughness (SR) 

obtained from the WEDM cutting experiments. 

The process and cutting parameters served as 

inputs to obtain experiment results, with the SR 

values as the output [33]. A regression equation 

was created for each desired output using 

Minitab 17. 

SR = 0.93 + 0.0844 pulse on time - 0.053 pulse 

off time + 0.2050 peak current - 0.00097 wire 

speed(5). 

Furthermore, the heatmap plot of the 

experimental dataset was built, as shown in 

Figure 7. Peak current shows some influence on 

SR, suggesting a direct relationship between 

discharge energy and surface characteristics.  

Pulse on time and surface roughness show a 

moderate positive correlation, meaning that 

higher pulse on time may lead to increased 

surface roughness. Pulse off time appears to 

have a weaker correlation with SR, indicating 

that it may have a less direct impact. Wire speed 

has a relatively lower correlation with SR, 

indicating that its effect might be minimal 

compared to other factors. 

 
Figure 7. Heatmap representation

5.1.4. Model evaluation using K-Fold cross-

validation 

Cross-validation (CV) is a strong and 

accepted technique for estimating machine 

learning model performance, and k-fold cross-

validation was used in this study to give an 

indication of the performance that we can rely 

on and that is unbiased [34]. In k-fold cross-

validation, we partition the dataset into k equal 

(or close to equal) subsets called folds.  In each 

iteration, one fold is taken as the test fold (the 

validation set), and the remaining k- folds are 

taken as the training set.  The model will be 

trained on the training folds and validated on the 

test fold.  This will be repeated k times, meaning 

that in total each fold will perform the function 

of a validation set exactly once. The final 

performance was obtained by averaging the 

metrics over the k folds, weighted by the 

number of samples in each test fold [35]. 

Increasing the number of folds helps ensure 

that more data is available for training in each 

iteration, usually resulting in more accurate 

performance estimates, and increasing the 
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number of folds could potentially lead to greater 

computational complexity. Modelling and 

evaluation took place within an organised 

framework that maximised the potential for 

accurate and independent performance 

estimation [34]. Starting with preprocessing of 

the dataset—including second-degree 

polynomial feature generation and SelectKBest 

feature selection for non-linear interactions and 

the selection of only the predictors deemed 

important—three machine learning models 

were then developed and tuned around pre-

defined hyper-parameters (to maximise 

predictive power): Random Forest 

(n_estimators = 100, max_depth = 3), Support 

Vector Machine with radial basis function 

kernel (kernel='rbf'), and an Artificial Neural 

Network in the form of an MLP Regressor with 

one hidden layer of 100 neurons (max_iter = 

1000). The performance of the models was 

assessed using a 5-fold cross-validation 

procedure, where the total data set was split 

equally into 5 folds. Each model was trained and 

tested once at each fold, so that for each 

iteration, four of the five folds were used for 

training the model, and onewas used for testing 

the model, which ensured each fold was tested 

at least once across the repeated training–testing 

sequences. This process not only provided 

unbiased performance estimates but also 

reduced bias from overfitting [35,36].  

Table 6: Feature metrics of the cross-validation 

Metric Random Forest Support Vector Machine Artificial Neural Network 

MAE 0.304 0.389 1.099 

RMSE 0.372 0.476 1.284 

MSE 0.139 0.227 1.648 

R² 0.300 -0.146 -7.344 

 

Table 6 and Figure 8 provide the 

comparative results from the model 

performance test, which also includes MAE, 

RMSE, MSE, and R², which all show the RF 

model produced the best predictive accuracy, as 

it had the smallest MAE (0.304), RMSE (0.372) 

and MSE (0.139) values, and a positive R² of 

0.300, which indicates that the RF model 

explained approximately ~30% of the variance. 

Meanwhile, SVM and ANN models had 

negative R² values (−0.146 and −7.344, 

respectively), which means they produced 

predictions that performed worse than simply 

predicting the mean, and the highest amount of 

error belonged to the ANN model. These 

findings also confirm the advantage of the RF in 

capturing the underlying characteristics of the 

data over the SVM and ANN. 

 
Figure 8. Comparative performance of RF, SVM, and ANN models (5-fold cross-validation) 
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5.2 Construct the ANN-Based Predictive Model  

Artificial Neural Networks (ANN) imitate 

the human brain, which comprises a network of 

neurons for information processing and storage. 

If the learning data is not sufficient, ANNs can 

produce incorrect output. ANN needs to convert 

inputs and outputs into the form of numbers, 

and its performance is greatly affected by the 

network structure, the different activation 

functions, and the learning algorithms 

[15,37].In this study, a rescaling method, 

normalised adjustments, and hyperbolic tangent 

activation functions were used to find patterns 

in data during the ANN training process, as 

shown in Figure 9. The input variables were 

standardised through rescaling of covariates. 

Custom architecture with two hidden layers was 

employed. Both hidden and output layers used 

the hyperbolic tangent activation function. 

Training was performed using an initial learning 

rate parameter (λ) of 0.0000005, an initial sigma 

of 0.00005, and a minimum relative change in 

training error of 0.0001. The weights were 

randomly initialised and biases after updating 

them iteratively using the trial and error method 

by a defined learning rate ranging from 0.1 to 

0.001. If the learning rate is too low, gradual 

optimisation is enabled, and in case the rate is 

too high, it may lead to instability. The 

regression plot for SR prediction using the ANN 

model is displayed in Figure 10, where R² is 

found to be a higher value, as indicated by 

0.918, signifying a very high standard linear 

relationship between the predicted and actual 

SR values. Plotted is the correct prediction of 

SR after optimisation of the network [18].A 

predictive model and mathematical equations 

representing relationships between process 

parameters and outcomes were created using 

SPSS Statistics 21. 

 
Figure 9. ANN structure  
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Figure 10. Regression graphs of the ANN model for SR 

5.3 Construct the Random Forest-based 

prediction model   

Random Forest employs ensemble learning 

through the utilisation of the bagging technique, 

in which numerous decision trees are 

constructed using distinct subsets of data [38]. 

Once the maximum number of trees is 

generated, their results are combined to enhance 

prediction accuracy while minimising variance 

and reducing the risk of overfitting. Unlike a 

single decision tree, which relies on one set of 

rules, Random Forest aggregates multiple trees, 

making it a more robust and reliable model [39]. 

However, this approach requires greater 

computational power and resources to process 

effectively. In contrast, the decision tree is 

simple and doesn’t require much computing 

power. The best tuning parameters obtained for 

the RF model were: n_estimators = 200, 

max_depth = 15, min_samples_split = 2, 

min_samples_leaf = 1 nand max_features = 

'sqrt'.Random Forest requires much longer 

training time than decision trees because it 

builds many trees (rather than a single tree), and 

most of the votes will make decisions. Figure 11 

shows Regression graphs of the random forest 

model for SR. 

 
Figure 11. Regression graphs of the random forest model for SR 
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5.4 Construct the support vector machine-

based prediction model   

Support Vector Machine (SVM) is a 

powerful and flexible soft computing approach 

rooted in statistical learning theory. It finds 

extensive application in classification, 

regression, pattern recognition, dependency 

estimation, and forecasting, establishing itself as 

a fundamental resource for crafting intelligent 

systems [38]. Among these models, SVM-based 

forecasts closely match the observed values with 

minimal deviations, underscoring the model’s 

precision and dependability in capturing 

intricate data patterns. The SVM has gained 

recognition as an effective predictive model in 

data mining, as it identifies underlying 

probabilistic structures within datasets to 

forecast potential outcomes based on input 

variables. The SVM model has been widely 

acknowledged and demonstrated to be an 

effective predictive model in data mining, as it 

aims to uncover the underlying probabilistic 

structure of the data to forecast potential 

outcomes using a specified set of input 

variables. Each model in SVM has several 

predictors, which are variables affecting the 

results [39]. This is an effective method to 

model multidimensional problems where 

traditional analytical/statistical methods do not 

give good results. Unlike conventional 

statistical methods, which often struggle with 

multidimensional problems and the risk of 

overfitting. In this study, SVM-based models 

were developed to predict SR in the  WEDM 

process. The optimal tuning was: kernel = 

radial basic function, C = 10, gamma = 

0.01, and epsilon = 0.1. These models 

provide valuable insights for process and 

Industry engineers to maintain high-quality 

machining outcomes. As illustrated in Figure 

12, the regression graph for SR further 

reinforces SVM’s robustness and precision in 

modelling complex machining processes. 

These regressions were constructed using 

the R programming language. Performance 

measurement of the supervised machine 

learning algorithms was conducted using the 

metric features of the Mean Squared Error 

(MSE), Mean Absolute Error (MAE) and the 

coefficient of determination (R2) as shown in 

Table 7. 

 
Figure 12. Regression graphs of the Support Vector Machine model for SR 
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Table 7: Metric feature of the regression-based algorithm 

Metric  Artificial Neural Network  Random Forest Support Vector Machine 

MSE 0.080    0.159 0.020 

MAE 0.280   0.398 0.140 

RMSE 0.283  0.399 0.141 

R² 0.918   0.931 0.810 

5.5 Comparison of regression-based algorithm 

performance 

 The effectiveness of the predictive models 

developed in this study is evaluated using three 

key statistical metrics: MSE, MAE, and the 

Coefficient of Determination (R²). These 

indicators help assess the models’ accuracy and 

reliability in predicting WEDM 

performance[40]. A comparative analysis of 

three regression-based machine learning 

algorithms—ANN, RF, and SVM—is shown in 

Table 7. By analysing these metrics, the study 

determines the strengths and limitations of each 

model, identifying which algorithm provides the 

most precise and reliable predictions for WEDM 

outcomes. 

 Random Forest (RF) demonstrates the best 

performance, achieving an R² score of  93.1% . 

However, its MSE value (0.159) and MAE 

value (0.398) are the highest, suggesting some 

prediction discrepancies. The benefit of the RF 

model is that it can handle complex 

relationships. However, it may lead to slight 

overfitting. ANN yields a competitive R² score 

of 0.918, ranking just behind RF as shown in 

Figure 13. This model has an MSE value of 

0.080 and an MAE value of 0.280, which 

indicates that it has achieved a better balance 

between accuracy and minimising error. 

 
Figure 13. Comparative performance of RF, SVM, and ANN models 

 The SVM is the model with the minimum 

value for the MSE=0.020 and MAE=0.140, 

indicating that the prediction error is minimised. 

But its R² value (0.810) is the lowest, with RF 

and ANN capturing more variance in the data. 

Although RF is the most accurate model across 

the board (best R²), the lowest error in absolute 

terms (lowest MSE and MAE) is through the 

SVM model. The Artificial Neural Network 

(ANN) offers a good trade-off regarding 

accuracy and error. Thus, Random Forest is 

best suited to model the WEDM process as it 

exhibits the highest predictive ability, followed 

by ANN due to its stable performance. SVM 
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provides good accuracy but might need to 

bootstrap predictive power. 

6. Conclusion 

The following conclusions were drawn after 

initial investigations and extensive analysis of 

the WEDM cutting process of Stainless Steel 

202.  

1. This study applies Taguchi optimisation to 

improve the WEDM process, focusing on 

minimising Surface Roughness by 

identifying optimal machining parameters. 

2. ANOVA results highlight that peak current 

significantly influences machining 

performance pulse on time showed a 

moderate yet non-significant influence. 

Pulse-off time and wire speed show 

minimal impact. 

3. Developed linear regression models 

demonstrate high accuracy and are 

supported by strong correlation coefficients 

and acceptable error margins, confirming 

their reliability for WEDM process 

modelling. Cross-validation analysis 

validated that across all models tested, RF 

outperformed SVM and ANN, and provides 

better predictive reliability for surface 

roughness in WEDM. 

4. Machine learning models used for 

performance prediction include Artificial 

Neural Networks, Random Forest, and 

Support Vector Machines. RF 

outperformed other models, achieved R² = 

0.931, had lower error rates than ANN 

achieved R² = 0.918, and SVM achieved R² 

= 0.810, and had a strong ability to capture 

complex data relationships. 

5. This combined approach of Taguchi 

optimisation and ML models effectively 

enhances, WEDM efficiency, reducing 

dependency on traditional trial-and-error 

methods. The findings support using data-

driven techniques for more accurate and 

efficient manufacturing processes. 
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