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ABSTRACT: - An artificial neural network (ANN) model of three-layers was advanced to 

predict the efficiency of the sulfur dioxide (SO2) removal from the flue gas stream (SO2+air) 

in a fixed bed reactor using granulated activated carbon sorbent. The experimental data were 

collected from varying six process variables, namely, initial SO2 concentration, reaction 

temperature, flue gas flow rate, sorbent particle size, bed height and reaction time. The data 

were used to create input-base information to train and test the NN strategy.  Back 

propagation algorithm with two hidden layers was used for training and tests the NN. The 

neural network predictions of SO2 removal efficiency agree with experimental data with the 

minimum mean squared error (MSE) for training and testing with values of 0.112*10-4 and 

0.817*10-3, respectively. 

Keywords: Artificial Neural Networks, Sorption, Removal Efficiency. 

 

1- INTRODUCTION 

The growth of industrialization makes it imperative to reduce the amounts of sulfur 

dioxide (SO2) released into the atmosphere. Sulfur dioxide is produced from some chemical 

processes, mainly fossil fuels combustion. Many attempts have been made for developing a 

new methods to control the SO2 emissions into the atmosphere (1, 2). The removal of the SO2 

from flue gases may be obtained by chemical or physical means, using gaseous, liquid or 

solid substances. The employment of activated carbons as sorbent materials for removal SO2 

is becoming increasingly to a greater extent widespread in various applications of      

industrial (1-3). 

Recently, a sustained attempt has been made in the direction of finding the modeling 

of the kinetics of the sulfation reaction. The concept of modeling should be developed for an 

efficient operation to predict the reaction efficiency and design. ANN has been used 

comprehensiveness in chemical engineering as a tool of powerful modeling in different 

processes such as membrane filtration (4-10), ultra filtration (11-13), reverse osmosis (14), water 

treatment (15-18) and flue gas desulfurization (3,19-20).  

In continuation of previous experimental work on SO2 removal from flue gases (21-22). 

The present paper reports the suitability models of a three layer neural using a back 

propagation (BP) to predict the removal efficiency of activated carbon for SO2. The data had 

been collected for experiments were initially divided on four types; training, testing, 

interpolation and extrapolation. Finally, the output obtained from the ANN prediction was 

compared with the experimental data. 

 

2. EXPERIMENTAL WORK 
The experiments were performed on a laboratory scale fixed bed reactor following the 

previous documented work (21). The test section is a QVF column, 7.5cm inside diameter and 
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50cm long. Industrial grade, activated carbon (AC) was used as sorbent with the part size 

(0.7) cm, (1.5) cm. The required amount of the sorbent was fixed in the center of the reactor 

by borosilicate glass wool. The external wired heater was heating up the reactor to the desired 

temperature and bed temperature monitoring by thermocouple. The Humidified air stream 

was combined with the required concentration of SO2 gas and fed to the reactor. The outlet 

SO2 gas concentration was determined using the titration method. The iodine was titrated 

with the sodium thiosulfate to calculate the SO2 concentration in the outlet stream. The 

schematic diagram of the experimental setup is shown in Fig. (1). the amount of titrated 

iodine is equal to the residual SO2 in the trap of analysis section. The SO2 removal efficiency 

was calculated from the ratio of SO2 concentration that was removed by AC to the initial 

concentration of SO2 gas fed to the bed as shown in the equation below: 

100*(%)
0

0 2

C

CC so
                                                               ….(*)         

η: SO2 removal efficiency 

C0: Initial concentration of Sulfur Dioxide (ppm) 
CSO2: Effluent concentration of Sulfur Dioxide (ppm) 
 

3.  NEURAL NETWORKS MODELING 
The artificial neural network is important role in modeling and predicting the linear 

and nonlinear problems in several engineering field. Many researchers sought to develop 

models from the experimentally data using statistical techniques. 

3.1. Background of Neural Network – Multiplayer – Perceptron Neural Network 

The neural network exemplary architecture of multilayer perceptron is illustrated in 

Fig. (2). The data are divided into training, testing, interpolation and extrapolation database, 

the status variety getting good description. The SO2 removal efficiency is predicted by ANN 

Levenberg-Marquardt BP models using a MATLAB program version 7.10. The Levenberg-

Marquardt algorithm determines the best weight connection by permitting error to release 

from layers (output toward hidden to input). The errors are calculated by comparing the 

output results with desired results. The training process persists for weight adjusting until the 

output of a network equals with an output of desired. Reducing the difference between 

network output and desired output by altering the weights and biases. The training process is 

ended at difference drop lower a specified target. Statistical parameters such as mean square 

error (MSE) and correlation coefficient (R2) values are used for evaluating the performance 

of the network prepared as follows(23):  

𝑀𝑆𝐸 = 1/𝑁 ∑ (𝑡𝑗 − 𝑜𝑗)
2𝑁

𝑡=1                                                         ….(1) 

𝑅2 = 1 − [
∑ (𝑡𝑗−𝑜𝑗)

2
𝑗

∑ (𝑜𝑗)
2

𝑗

]                                                                   ….(2) 

Where t is a target value, o is an output value, and N is a pattern. 

Therefore, the performance of the network measures by using MSE as the error 

function. Consequently, network possesses maximum R2 and minimum MSE is chosen as 

better NN model (24).  

 

3.2. Backpropagation Network Algorithm  

The prediction, of the multilayer feed forward ANN training involves conditioning 

input–output examples to the network and minimizing the objective function (i.e., error 

function) by use optimization method a first-order or a second-order. Training can be shaped 

as one of minimizing a function of the weight, the sum of the nonlinear least squares between 

the observed and the predicted outputs defined by the following equation:  

𝐸 =
1

2
∑ (𝑌𝑜 − 𝑌𝑝)2𝑛

𝑝=1                                                                 ….(3) 
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Where: n is the observations, Yo is the target output, and Yp the predicted output. In 

the BP training, the steepest decent method is used to reduce the error and to calculate the 

gradient of the error function by applying the chain rule on the hidden layers of NN. The 

hidden layer involves M neurons, and the network is presented by Eq.(4) and Eq.(5) (25): 

𝑛𝑒𝑡𝑃𝐽 = ∑ 𝑊𝑗𝑖𝑋𝑝𝑖 +  𝑊𝑗𝑜
𝑁
𝐼=1                                                        ….(4) 

𝑔(𝑛𝑒𝑡𝑃𝐽) =
1

1+𝑒
−𝑛𝑒𝑡𝑃𝐽

                                                                  ….(5) 

Where: netPJ is the weight inputs into the jth hidden unit, n is the total number of 

input nodes, Wji is the weight from input unit i to the hidden unit j, xpi is a value of the ith 

input for pattern P, Wjo is the threshold (or bias) for neuron j, and g(netPJ) is the jth neuron’s 

activation function assuming that g is a logistic function. The input units do not entire the 

operation on the data, but simply pass it onto the hidden nodes. The output unit receives a net 

input of: 

𝑛𝑒𝑡𝑃𝐾 = ∑ 𝑊𝑘𝑗 .𝑀
𝐽=1 𝑔(𝑛𝑒𝑡𝑃𝐽) + 𝑊𝑘𝑜                      ….(6) 

𝑦𝑝𝑘=𝑔(𝑛𝑒𝑡𝑃𝑘)                                                                ….(7) 

Where: M is the number of hidden units, Wkj represents the weight connecting the 

hidden node j to the output k, Wko is the threshold value for neuron k, and ypkis the kth 

predicted output. The set of weights Wji is finding by The ultimate goal of the network 

training, connecting input units I to the hidden unit j and Wkj, connecting the hidden unit j to 

output k, that minimize the objective function in Eq.(1) (26). Since Eq.(1) is not lucid function 

of the weight in the hidden layer, the first partial derivatives of E in Eq.(1) is evaluated with 

respect to the weights using the chain rule, and the weights are moved in the steepest descent 

direction. That is designed mathematically as follows: 

𝛥𝑊𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑊𝑘𝑗
                                                         ….(8) 

Where: 𝜂 is the learning rate that measures step size. The approximate, in back 

propagation training contains in selection 𝜂 in conformity with the relation 0\η\1. For 

adjusting the weights and biases of the network the learning rule is a measure [25].  

3.3. Model Structure and Parameters for Neural Network 

The model of artificial neural network in this paper has six neurons in input layer and 

one neuron in the output layer as illustrated in Fig.(3). The values for input layers are the 

initial SO2 concentration, reaction temperature, flue gas flow rate, sorbent particle size, bed 

height and reaction time. The removal efficiency of SO2 represents the value of the output 

layer. The input parameter range has been shown in the table (1).  

In the hidden layer the transfer function tangent sigmoid (tansig) and in the output 

linear transfer function (purelin) is used. Through iterations, the model was trained. Tested 

the trained model with the input values, and the results of predicted were close to the 

experimental results. 

NN model performance mostly to rely on the architecture and parameter settings of 

the network. Finding this optimal network architecture is hard tasks in studies of ANN that is 

founded on specification of values of ideal layers and neurons for hidden layers through a 

trial-and-error approach (27).  

Matlab ANN mathematical software was used in ANN applications. Which treats the 

trial-and-error process; a program has been developed in Matlab to overcome optimization 

difficult (28). Both first and second hidden layers the program tries various numbers of layers 

and neurons in the hidden layer. 

 

4. RESULTS AND DISCUSSION 
4.1. Interpolation 

The SO2 removal efficiency computed from the train and test of ANN plotted against 

the experimental results, as shown in Fig.(4). The MSE for training and test set was 

1.1212*10-5 and 8.1753*10-4, respectively. On the other hand, the R2 for training and testing 
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set was 0.99991and 0.99924, respectively. The ability of the NN to predict the data not used 

in training are demonstrated in Fig.(4b). Fig.(4) shows the results of the NN activity as a 

strong modeling tool. Evaluating the ability of NN to interpolate, a sorbent activity test was 

conducted within the ranges of the six process variables displayed in table (1). Different 

interpolation parameters were used to interpolate the SO2 removal efficiency as shown in 

table (1). The flue gas flow rate was set to be 30 (l/min), which is inside the range of flue gas 

flow rate used for training (20-70 l/min) can be shown in a table (2). Fig.(5) showing 

distinguished agreement and to prove the model's capability to interpolate the 

multidimensional input space of the sulfation process with satisfactory accuracy. The values 

of MSE are 5.6148*10-6 and 0.0026 for Fig.(5a) and Fig.(5b) respectively. 

4.2. Extrapolation 

Although the NN have excellent interpolation properties, it can offer reliable 

predictions outside the training or test domain because of its empirical nature. A test of 

significant of the predictive capability of the NN is the range to which it can predict 

efficiency of SO2 removal outside its training domain. Fig.(6) and Fig.(7) shows the results 

for two cases whose input conditions were outside the ranges of the training domain can be 

seen in table (3 and 4). In the case 1, Fig.(6 a,b) shows the efficiency of SO2 removal of a 

sorbent activity test carried out with the same all parameters used in the training phase except 

the flue gas flow rate used at 80 (l/min).  In the case 2, shown in Fig.(7 a,b) all parameters 

were inside the training domain while the initial SO2 concentration was set at 2000 ppm. It is 

obvious that the predictions given by the NN are very close to the actual values, yielding the 

values of MSE for case 1 Fig.(6a) and Fig.(6b) are 7.6661*10-5 and 1.0608*10-4, respectively. 

For case 2 the MSE for Fig.(7a) and Fig.(7b) are 8.0204*10-5 and 8.1322*10-5, respectively. 

The excellent extrapolation properties of the NN may be ascribed to the fact that at 

the higher flue gas flow rate of 80 (l/min) and the higher SO2 inlet concentration (2000) ppm 

tested the kinetic profiles still closely resemble those inside the training domain. Apparently, 

the training set used in this work contained a large enough database to allow extrapolation. 

This suggests that when sufficiently large training sets of data are available, purely empirical 

NN are able to give accurate predictions on extrapolation. 

Fig.(8) shows the SO2 removal efficiency calculate from NN against the 

corresponding experimental data at constant reaction temperature of 80 0C, constant bed 

height of 18 cm, constant sorbent particle size of 0.7 mm and constant initial concentration of 

SO2 of 500 for different flue gas flow rates for an hour interval. It can be seen the maximum 

overall removal efficiency can be obtained at 40  /min flue gas flow rate. Beyond this value 

the overall removal efficiency decreases. 

It's clear that the model is suitable for predication of the SO2 removal efficiency and 

the resulted, values were very closed to experimental values. The best value of MSE is 

2.0026*10-4. 

The Kinetic behavior varied with flow rate and desulfurization property was 

controlled by diffusion at flow rates below 40  /min, and controlled by adsorption or 

catalytic reaction at flow rates above 40  /min.    

5. CONCLUSIONS 
The feasibility of using a neural network to predict the SO2 removal efficiency from 

flue gas stream (SO2 + air) in a fixed bed reactor using activated carbon sorbent. The 

predictions of the neural network shown an excellent agreement with the experimental data 

based on the category of MSE for both training and testing. The neural network is shown to 

give comparable predictive capability when used for interpolation and extrapolation, for a 

variety of reactions. 
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Table (1) The range of the input parameters in ANN models. 

Inputs Range 

(ppm) concentration 2Initial SO 500-1500 

C)o( Reaction temperature 30-80 

Flue gas flow rate (l/min) 20-70 

Sorbent particle size (mm) 0.7-1.5 

Bed height (cm) 10-24 

Reaction time (min) 0-60 

 
Table (2) The parameters value used in the interpolate of the SO2 removal efficiency for 

ANN model. 

Inputs Interpolation a Interpolation b 

concentration (ppm) 2Initial SO 500 500 

C)oReaction temperature ( 30 80 

Flue gas flow rate (l/min) 30 30 

Sorbent particle size (mm) 1.5 0.7 

Bed height (cm) 24 18 

Reaction time (min) 0-60 0-60 
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removal efficiency for  2The parameters value used in the extrapolation of the SO Table (3)

ANN model. 

Inputs Extrapolation a Extrapolation b 

concentration (ppm) 2Initial SO 500 500 

C)oReaction temperature ( 80 30 

Flue gas flow rate (l/min) 80 80 

Sorbent particle size (mm) 0.7 1.5 

Bed height (cm) 18 24 

Reaction time (min) 0-60 0-60 

 

 

 

removal efficiency for  2The parameters value used in the extrapolation of the SO Table (4)

ANN model. 

Inputs Extrapolation a Extrapolation b 

concentration (ppm) 2Initial SO 2000 2000 

C)oReaction temperature ( 80 80 

Flue gas flow rate (l/min) 20 20 

Sorbent particle size (mm) 1.5 0.7 

Bed height (cm) 24 24 

Reaction time (min) 0-60 0-60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1) Schematic diagram of the experimental setup 

 

 

 



 
NEURAL NETWORK MODELING OF THE SULFUR DIOXIDE REMOVAL BY ACTIVATED CARBON SORBENT 

 

Diyala Journal of Engineering Sciences, Vol. 09, No. 02, June 2016 

92 

 

 
 

.)25( neural network ilayer perceptronof mult The exemplary architecture Fig.(2) 
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Fig.(3) The system used in the ANN model. 

 
removal efficiency. 2Scatter plot showing experimental vs. neural network of the SO (4)Fig. 
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.removal efficiency 2The effect of gas flow rate on the SO Fig.(8) 
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نمذجة الشبكات العصبية في ازالة ثاني اوكسيد الكبريت باستخدام الكربون المنشط كمادة 
 مازة

 3 .عفراء هلال كامل،2 نيران خليل ابراهيم، 1.صفاء الدين عبد الله النعيمي 
 مدرس مساعد 3 استاذ 2،1

 قسم الهندسة الكيمياويةالجامعة التكنولوجية,  3,،,1
 الخلاصة 

في هذا البحث تم تطوير الموديل الرياضي باستخدام نظام الشبكات العصبية لتقييم طريقة ازالة ثنائي اوكسيد 
الكبريت من خليط غازي من )الهواء وثنائي اوكسيد الكبريت( باستخدام الكاربون المنشط كمادة مازة في مفاعل الطبقة 

يد الكبريت و درجة العملية تم الحصول عليها بتاثير ستة عوامل رئيسية, وهي التركيز الاولي لثاني اوكسالثابتة. النتائج 
 وقطر الجزيئة الممتصة وارتفاع العمود وزمن التفاعل. و ومعدل تدفق الغاز العادم حرارة التفاعل

تم استخدام المعطيات العملية لتدريب واختبار موديل الشبكة العصبية وقد تم استخدام اسلوب التغذية المرتدة ذات 
الطبقتين المخفية لتدريب واختبار الشبكة العصبية. النتائج النظرية لازالة ثنائي اوكسيد الكبريت المستحصلة يتطابق مع 

على  10*0.817-3و  10*0.112-4 خطأ بنظام التدريب والاختبار بقيمة المعطيات العملية حيث اعطى مقدار مربع ال
 التوالي.

 الشبكات العصبية الاصطناعية, الامتصاص , كفاءة الازالة. :الدالةالكلمات 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


