Diyala Journal ISSN 1999-8716
of Engineering Printed in Iraq
Sciences

Vol. 08, No. 03, pp. 22-37, September 2015

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR
DETECTION AND CORRECTION USING VHDL

Adham Hadi Saleh
Assistant Lecturer, Department of Electronic engineering, College of Engineering, University
of Diyala
adham.hadi@yahoo.com
(Received: 16/2/2014; Accepted: 21/9/2014)

ABSTRACT: - Hamming code is an efficient error detection and correction technique
which can be used to detect single and burst errors, and correct errors. In communication
system information data transferred from source to destination by channel, which may be
corrupted due to a noise. So to find original information we use Hamming code.

In this paper, we have described how we can generate 7 redundancy bit for 64 bit
information data. These redundancy bits are to be interspersed at the bit positions (n =1, 2, 4,
8, 16, 32 and 64) of the original data bits, so to transmit 64 bit information data we need 7
redundancy bit generated by even parity check method to make 71 bit data string. At the
destination receiver point, we receive 71 bit data, this receives data may be corrupted due to
noise. In Hamming technique the receiver will decided if data have an error or not, so if it
detected the error it will find the position of the error bit and corrects it. This paper presents
the design of the transmitter and the receiver with Hamming code redundancy technique
using VHDL. The Xilinx ISE 10.1 Simulator was used for simulating VHDL code for both
the transmitter and receiver sides.

Keywords: Hamming code, error correction, error detection, even parity check method,
Redundancy bits, VHDL language, Xilinx ISE 10.1 Simulator

INTRODUCTION

The theory of linear block codes is well established since many years ago. In 1948
Shannon's work showed that any communication channel could be characterized by a
capacity at which information could be reliably transmitted. In 1950, Hamming introduced a

single error correcting and double error detecting codes with its geometrical model (1).

In telecommunication, Hamming code as a class of linear block codes is widely used,

Hamming codes are a family of linear error-correcting codes that generalize the

22

mailto:eng_nyan1@yahoo.com.
mailto:eng_nyan1@yahoo.com.
https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Linear_code

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL
Hamming(7,4)-code. Hamming codes can detect up to two-bit errors or correct one-bit errors.

By contrast, the simple parity code cannot correct errors, and can detect only an odd number
of bits in error. Hamming codes are perfect codes, that is, they achieve the highest possible

rate for codes with their block length and minimum distance 3 ¢,

Due to the limited redundancy that Hamming codes add to the data, they can only
detect and correct errors when the error rate is low. This is the case in computer memory
(Error Checking & Correction, ECC memory), where bit errors are extremely rare and
Hamming codes are widely used. In this context, an extended Hamming code having one
extra parity bit is often used. Extended Hamming codes achieve a Hamming distance of 4,
which allows the decoder to distinguish between when at most one bit error occurred and
when two bit errors occurred. In this sense, extended Hamming codes are single-error-
correcting (SED) and double-error-detecting (DED). The ECC functions described in this
application note are made possible by Hamming code, a relatively simple yet powerful ECC
code. It involves transmitting data with multiple check bits (parity) and decoding the
associated check bits when receiving data to detect errors. The check bits are parallel parity
bits generated from XORing certain bits in the original data word. If bit error(s) are
introduced in the codeword, several check bits show parity errors after decoding the retrieved
codeword. The combination of these check bit errors display the nature of the error. In

addition, the position of any single bit error is identified from the check bits %),

Error detection and correction codes are used in many common systems including:
storage devices (CD, DVD, DRAM), mobile communication (cellular telephones, wireless,
microwave links), digital television, and high-speed modems. Hamming codes is a Forward
Error Correction (FEC), as a fundamental principle of channel coding techniques, provides
the ability to correct transmission errors without requiring a feedback channel for a correct
retransmission. The exact correction capability of an FEC code varies depending on the

coding schemes used ©9),

The basic idea for achieving error detection is to add some redundancy bits to the
original message to be used by the receivers to check consistency of the delivered message
and to recover the correct data. Error-detection schemes can be either systematic or non-
systematic: In a systematic scheme the transmitter sends the original data and attaches a fixed
number of check bits. That is derived from the data bits by some deterministic algorithm. If
only error detection is required a receiver can simply apply the same algorithm to the
received data bits and compare its output with the received check bits if the values do not

match an error has occurred at some point during the transmission. In a system that uses a

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
23

https://en.wikipedia.org/wiki/Hamming%287,4%29
https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Perfect_code
https://en.wikipedia.org/wiki/Block_code#The_rate_R
https://en.wikipedia.org/wiki/Block_code#The_block_length_n
https://en.wikipedia.org/wiki/Block_code#The_distance_d

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL
non-systematic code the original message is transformed into an encoded message that has at

least as many bits as the original message. Error correction & detection Hamming code may
perform using Even parity or Odd parity +®.

Suppose, we want to transmit 64 information data bit s
“01”which
equal in hexadecimal5555555555555555". For this 64 bit information data we need 7
redundancy bits using even parity method. After generating redundancy bits, add these bits
to 64 bit information data for making 71 bit data string for transmission at source end. How
we can generate 7 redundancy bits for 64 bit information data for making 71 bit data string
for transmission at source end by using even parity method will be discussed in details at
communication with even parity method. At destination receiver receives 71 bit data string
from channel and check it, is it corrupted or not? If it is corrupted then the receiver find the
error location according to parity check method correct it.

2. Error Detection and Correction

For a given practical requirement, detection of errors is simpler than the correction of
errors. The decision for applying detection or correction in a given code design depends on
the characteristics of the application. When the communication system is able to provide a
full duplex transmission (that is, a transmission for which the source and the destination can
communicate at the same time, and in a two way mode, as it is in the case of telephone
connection, for instance), codes can be designed for detecting errors, because the correction is
performed by requiring a repetition of the transmission & ®.

These schemes are known as automatic repeat request (ARQ) schemes. In any ARQ
system there is the possibility of requiring a retransmission of a given message. There are on
the other hand communication systems for which the full-duplex mode is not allowed. An
example of one of them is the communication system called paging, a sending of
alphanumerical characters as text messages for a mobile user. In this type of communication
system, there is no possibility of requiring retransmission in the case of a detected error, and
so the receiver has to implement some error-correction algorithm to properly decode the

message. This transmission mode is known as forward error correction (FEC) @8,

3. HAMMING CODE
Hamming code is a linear error-correcting code named after its inventor, Richard
Hamming. Hamming codes can detect up to two simultaneous bit errors, and correct single-

bit error. By contrast, the simple parity code cannot correct errors, and can only detect an odd

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
24

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL
number of errors. In 1950 Hamming introduced the (7, 4) code. It encodes 4 data bits into 7

bits by adding three parity bits. Hamming (7, 4) can detect and correct single — bit errors.
With the addition of overall parity bit, it can also detect (but not correct) double bit errors.
Hamming code is an improvement on parity check method. It can correct 1 error bit only ©).
Hamming code used two methods (even parity and odd parity) for generating
redundancy bit. The number of redundancy bits depends on the size of information data bits

as shown below (@ 9 10.11):

2"> m+r+l (1)
Where r = number of redundancy bit.
m = number of information data bits.

According to (1), 7 redundancy bits required for a 64 input data bits. Hamming-based
codes are widely used in memory systems for reliability improvements. The algorithm
consists of two phases: encoding and decoding. Hamming encoding involves deriving a set of
parity check bits over data bits. These parity check bits are concatenated or merged with the
data bits. These extra bits are called redundancy bits. We add these redundancy bits to the
information data at the source end and remove at destination end. Presence of redundancy bit
allows the receiver to detect or correct corrupted bits. The concept of including extra
information in the transmission for error detection is a good one. But in place of repeating the
entire data stream, a shorter group of bits may be added to the end of each unit. This
technique is called redundancy because the extra bits are redundant to the information @ 1213
14)_

3.1 Hamming Encoder

In communication system need two main part one of them is the source for sending
data and another is the destination to receive the transmitted data. Even parity check method
count the number of one’s if number of one’s are even it adds zero (0) otherwise it adds one
(1) (8).

At the transmitter the 64 bit information data needs 7 redundancy bit according to
equation (1). Suppose, these redundancy bits are R(1),R(2),R(4),r(8),R(16) R(32),R(64),and
to calculate these redundancy bits easily done by XORing operation of the original data bit

positions as shown below:

R(1) = D1 D2 @ D4® D5 @ D7 @ D9 D11 @ D12 D14 @ D16 @ D18 @ D20 ¢ D22 b D24 ®
D26 @ D276 D29 @ D31 @ D33 @ D35 ¢ D37 @ D39 @ D41 @ D43 @ D45 @ DA7 @ D49 @ D51 P
D53 @ D55 @ D57 @ D58 @ D60 @ D62 D64)

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
25

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL
R(2) = D1® D3 @ D4 D6 @ D7 @ D10 @D11 @ D13 D14 @ D17 @ D18 @ D21 D22 @ D25 D
D26 & D28® D29 ¢ D32 @ D33 D D36 D D37 @ D40 @ D41 D D44 D D45 @ D48 D D49 @ D52 @
D53 & D56 & D57 @ D59 ¢ D60 ¢ D63 D64. (3)

R(4) = D2® D3 @ D4® D8 @ D9 @ D10 ¢GD11 ¢ D15@ D16 P D17 P D18 @ D23 @ D24 P D25 D
D26 @ D30 D31 & D32 ¢ D33 D D38 D D39 D D40 & D41 & D46 D D47 D D48 & D49 & D54 D
D55 @ D56 & D57 @ D61 & D62 & D63 D64. (4)

R(8) = D5@® D6 @ D7 D8 @ D9 @ D10 D11 @ D19 D20 @ D21 @ D22 @ D23 @ D24 @ D25 @
D26 6 D346 D35 @ D36 @ D37 @ D38 @ D39 @ D40 & D41 @ D50 € D51 p D52 ép D53 & D54 B
D55 @ D56 @ D57. 5)

R(16) = D12¢ D13 @ D14 D15 @ D16 @ D17 ©D18 @ D196 D20 @ D21 @ D22 @ D23 @ D24 @
D25 @ D26 @ D42 D43 D D44 D D45 D D46 D D47 @ D48 & D49 @ D50 ¢ D51 & D52 ¢ D53 D
D54 @ D55 & D56 @ D57. (6)

R(32) = D276 D28 @ D29 D30 @ D31 @ D32 @D33 @ D34@ D35 @ D36 @ D37 @ D38 @ D39 P
D40 @ DAL @ D42 D43 @ D44 @ D45 @ D46 @ DAT @ D48 @ D49 @ D50 @ D51 @ D52 @ D53 ®
D54 @ D55 @ D56 @ D57. @

R(64) = D586 D59 @ D60 D61 D62 DD63 @ D64. (8)

The value of redundancy bits can be calculated using an even parity check method.
The value of redundancy bit can be calculated by XORing of different locations of
information data bits, as shown in Figure (1). The calculation of redundancy bit of Hamming
encoder is done by VHDL code written in Xilinx ISE 10.1 project navigator window as
shown in Figure (2).

Suppose, we want to transmit 64 information data bit s
“01”’which
equal in Hexadecimal "5555555555555555".Calculation for redundancy bits, by XORing
input bit, according to hamming code with even parity redundancy the transmitted data will
be 71 bits “0100 1011 0101 0100 1010 1010 1010 1011 0101 0101 0101 0101 0101 0101
0101 0101 1010 101” which equal in Hexadecimal "25AA5555AAAAAAAALS" as
explained in Figure (1).

The simulation of Hamming code generation code for VHDL code for source end as
shown in Figure (3) and Figure(4). The schematic circuit diagram is shown in Figure (5), and

Hamming encoder design status is shown in Table (1).

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
26

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL
3.2 Hamming Decoder

At the receiver side 71 bit information data is received, 64 bit encrypted information
data and redundancy 7 bits. At the destination, the receiver receives 71 bit encrypted data and
check for any error that may occurred. If any error is occurred, receiver find the error location
and corrects it. Hamming decoder detect the error by EXORIing data and corrected it by a
NOT gate (8).Then the receiver removes the redundancy bit and get the original data
information, if there are no error the result of even parity check was (0000000) else it detect
the location of error bit as shown in Figure (6).

The detection and correction of a single error bit by Hamming decoder is done by
VVHDL code written in Xilinx ISE 10.1 project navigator window as shown in Figure (7).

So according the supposed example the received data with no error (noiseless
channel) will be “0100 1011 0101 0100 1010 1010 1010 1011 0101 0101 0101 0101 0101
0101 0101 0101 1010 101” which equal in Hexadecimal "25AA5555AAAAAAAASLS". As
shown in Figure (8) and Figure (9), where 'ded means detection error' and 'ne means no error.

Suppose, transmitter of source end transmit data is “0100 1011 0101 0100 1010 1010
1010 1011 0101 0101 0101 0101 0101 0101 0101 0101 1010 101” which equal in
Hexadecimal "25AA5555AAAAAAAASS" and at destination receiver received error data is
“0110 1011 0101 0100 1010 1010 1010 1011 0101 0101 0101 0101 0101 0101 0101 0101
1010 101” which equal in Hexadecimal "35AA5555AAAAAAAAS5", Hamming decoder at
first detect the error location by even parity checking method and corrected it as shown in
Figure (10)

According to Hamming detection method take even parity check to get the address of
error location is = 0000011 (the third bit at the input data). After getting the location of error
bit, the receiver correct, that error bit by replacing zero by one and one by zero. To produce
the actual transmitted data.

We write VHDL code to find the error bit location, correction it and decrypt this
encrypted data. Simulated results for destination end shown in Xilinx ISE 10.1 Simulation
window which shows 71 bit receives encrypted data string and 64 bit actual error free
information data string after correction the errors, as shown in Figure (11) and Figure (12).
Where Figure (13) show schematic circuit diagram of Hamming decoder. The design status

of Hamming decoder is shown in Table (2).

4. CONCLUSION

As a conclusion, Hamming code error detection and correction with even parity check

method can be design using 64 bits data string in VHDL and can be implemented in FPGA. it

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
27

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL

speed up the communication as we can encode the total data bits as a whole and send as soon,

so there are no need for data splitting, therefore more combination (more information in a

single frame) of data can be transmitted easily. The complexity of circuit also reduced for

regenerating actual information data from encrypted corrupt received data at destination end

by using of the same method at the source end, so the original data can be correctly

recovered.

5. REFERENCES

1)

2)
3)
4)

5)

6)

7)

8)

9)

Joanne Gomes and B. K. Mishra "DOUBLE ERROR CORRECTING LONG CODE"
International Journal of Computer Networks & Communications (IJCNC) Vol.2, No.5,
September 2010.

en.wikipedia.org/wiki/Hamming code.

Moon, Todd K. “Error Correction Coding”, New Jersey, John Wiley & Sons, (2005).
Simon Tam "Single Error Correction and Double Error Detection™ XILINIX, XAPP645
(v2.2) August 9, 2006.

Brajesh Kumar Gupta, M. Tech Scholar and Associate prof. Rashmi Sinha " Novel
Hamming code for error correction and detection of higher data bits using VHDL"
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April,
2013.

Patrick Faraj, Jochen Leibrich and Werner Rosenkranz “Coding Gain of Basic FEC
Block-Codes in the Presence of ASE Noise” University of Kiel, Chair for
Communication, Kaiserstr. 2, 24143 Kiel, Germany, IEEE, 2003.

Jatinder Singh and Jaget Singh “A Comparative study of Error Detection and Correction
Coding Techniques” Second International Conference on Advanced Computing &
Communication Technologies, IEEE, 2012.

Behrouz A. Forouzan, “Data communication and networking” 3nd edition McGraw Hill
publication.

Brajesh Kumar Gupta, M. Tech Scholar and Associate prof. Rashmi Sinha “30 BIT
Hamming Code for Error Detection and Correction with Even Parity and Odd Parity
Check Method by using VHDL” International Journal of Computer Applications (0975 —
8887) Volume 35— No0.13, December 2011.

10) Mr. Brajesh Kumar Gupta and Prof. Rajeshwar Lal Dua “COMMUNICATION BY 31

BIT HAMMING CODE TRANSCEIVER WITH EVEN PARITY AND ODD PARITY
CHECK METHOD BY USING VHDL” International Journal Of Computational
Engineering Research / Vol. 2 | Issue No.2 |278-288, Mar-Apr 2012

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
28

http://www.neng.usu.edu/ece/faculty/tmoon/eccbook/book.html
https://en.wikipedia.org/wiki/New_Jersey
https://en.wikipedia.org/wiki/John_Wiley_%26_Sons

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL
11) U. K. Kumar, and B. S. Umashankar “Improved Hamming Code for Error Detection and

Correction” IEEE, 2007.
12) Davit Mirzoyan “Fault-Tolerant Memories in FPGA based Embedded Systems” M.SC

thesis, Dept. of Information and Communication Technology, Royal Institute of
Technology (KTH), Sweden, Stockholm , June 2009.

13) Brajesh Kumar Gupta Rajeshwar Lal Dua “Various Methodologies used for 25 Bit
Information Data String Communication through Hamming Code™ International Journal
of Applied Information Systems (IJAIS) — ISSN : 2249-0868 Foundation of Computer
Science FCS, New York, USA Volume 2— No.2, May 2012.

14)S. Balochi, T. Arslani, and A. Stoicaiii “Efficient Error Correcting Codes for On-Chip
DRAM Applications for Space Missions” IEEE, 2005.

Table (1): Hamming encoder design status.

HAMMINGENCODES64 Project Status

Project File: HAMMINGENCODESG64.ise Current State: Synthesized
Module Name: hamenc ® Errors: MNo Errors
Target Device: xc3s200-4ft256 = Warnings: No Warnings
Product Version: ISE 10.1 - WebPACK = Routing Results:
Design Goal: Balanced = Timing Constraints:
Design Strategy: Xilinx Default (unlocked) # Final Timing Score:
HAMMINGENCODEG4 Partition Summary 1

No partition information was found.

Device Utilization Summary (estimated values) [1
Logic Utilization Used Available Utilization
Number of Slices 28 1920 1%
Number of 4 input LUTs 50 3840 1%
Number of bonded IOBs 135 173 78%

Table (2): Hamming decoder design status.

HAMMINGdecoder64 Project Status

Project File: HAMMINGdecoder64.ise Current State: Synthesized
Module Name: hamdec ® Errors: No Errors
Target Device: xc3s200-41t256 * Warnings: 68 Warnings
Product Version: ISE 10.1 - WebPACK # Routing Results:
Design Goal: Balanced * Timing Constraints:
Design Strategy: Xilinx Default (unlocked) ® Final Timing Score:
HAMMINGdecoder64 Partition Summary 2]

No partition information was found.

Device Utilization Summary (estimated values) L1
Logic Utilization Used Available Utilization
Number of Slices 135 1920 7%
Number of 4 input LUTs 245 3840 6%
Number of bonded 10Bs 137 173 79%
Number of GCLKs 1 8 12%

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
29

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL

| 0 000 INORDND INDNDNDDEDNEDNEDE DENDDNDNDEDNDNENNNDNDNINDNInnnD NNDNne

PIEFSOLBEOL LT BRSO LG RGN TROEE0EWHEEMEN LN PRIy 05 1575 €9 P9 SO0 LGRS GE 09 IO I0CO MOS0 00 LOBOGAOLU
3007 INIWINWH HLIM VIVE NOISSIINSNYYL 3HL

E:ﬁ__:__:;.:___"_:_;;_g:F.a_a;:;_n____:__u::;;_;;__u.:.___.___._:
M 8 £ b7 22

e el o

| 0 000 DDONDND DONDNDNDNDEDNEDNEE DNNDoDDnnoDnonnnnnDnnDnnnDonnnonD innnnni
¥

TR T e L
RS SN NN Y

0 BEE oRRRDNE ol e[l ool v]ols]als]a] 0 Lfals]ol o]y
o o w

CL L

e e e O e e e O O e e e B O e e el O O ¥

BN oo ol Te Lo To [To v To v o v o v I o+ [o s [o [+ o s [ow o ¢ ol o+ o[+ o v o+ o ol ol +To s o + [0 +T0 ¢ 0]+
TP ¥ s w o

.—

1ttt 4ttt EEEEEEN EEEREEE) EEEEERE)
[0 o[+ 0] [+[0]}] onon onn [+[o]4]0] [+lo]4]0] [+[0[4]0] non
Mg w 8 [w o
) 1111 1111 t1111)) 1t tate 1ttt

ol [o P + [o RO PO o [s oo o [+ T o [+ oSl o 0 » [o [N « T o [0S + [o [55a] + [o R0 +] o NG + [o [0+ [o RO + OO o+ [0lWl
o a_

CR2 & w
+ 4 + 1 + 1t + 4 t ol ¥ 1+ 1 t 1t + 4 t 4 + 1t + 4 t 1t + t t + 1t + 4 t 4

Rlofwf ol ofefofufolw]ols]als

of v o+ [of + [o] + o] v o] v o] o] s [o] s o] + o] + o] v o + [o] + [o] s To R o [o] o] 0 %]
1

t ¢+ ¢+ 4+ 4+ 4+ 4+ + + ¢+ 4+ 4+ 4+ ¢+ + ¢+ ¢+ 4+ 4+ 4+ + + + + 4+ 4+ 4+ ¢t

I A R I I I I L L e e I amaEaman aaran annr
PEEF SO LRG00 ML THEL KL SO LL RGO M IT CT YT ST O LT OT 67 OC U ZC €0 FE SE O LC € 6C O b IF OF %0 SF OF IR BF 6% 05)5 75 €9 b9 G5 96 L
VIFD TYMISINO

H|l=
52|~

ts.

for64 B

1on

Code Generati

Hamming

Figure (1)

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015

30

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL

Fle Edt View Profct Source Process Widow Help -]
OFEG L XDEX Da M:PLPHXAR (N:BEDD: AN MKF ViV QORAPL EFM MERALN 00
EV CTILARMROK
1 A
Souees for:| Implementsfion ~ 2
T‘T!HAMH\NGENCDDESJ 3
£l 320041258 4
(i hamen - vr? [HAMMING :
7 ring library declaration i instantiating
8 in this code.
k)
10 use UNISIM.VCowponents.all;
1
12
13 PORT (dacaln : IN F\IT_UE\'T\'R[] TO 64); --dl d2 d3...... 164
{) 14 hamout ¢ OUT BIT VECTOR{1 TO 71)); REDINDANCY. .ovvvvnninnnns d71
) Soun| T s o Srepe| Py e | 12 ENP hamenc
s | g) R s v ver of nwene 13
17 SIGNAL pl, p2, pd, p8 .pl6, D32, p84 @ BIT: --check bits
Frocesses for. hamenc - ver2 A }g B
[AddExiting Souice 0 qenerare check bits
Create New Source = ¢ (5 ¥ . ¢ ; |
a8 21 pl ¢= datain(l) ¥OR datain(2) ¥OR datain(4)XOR datain(5) XOR datain|?) XOR datain(9) XOR datain{ll) ¥OR datain(12) XOR datain(14)
L ViewDesign Summary 22
3 g Desagn Utibtiess 23 p? <= dacain(l] ¥OR datain(3) XOR datain(4) XOR datain(6) ZOR datain(?) XOR datain(i0) XOR datain(il) ¥OR datain(13) 20R datain(14)
Vs Corsbaints 24 datain(22) XOR datain(Z5) XOR datain(26) ZOR datain(Z8) IOR datain(9) IOR datain(32) XOR datain{33) ZOR datain(3)xor datain
. 25 datain(d48) XOR datain(49) ¥OR datain(5Z) X0F dataini53) XOR datain(56) HOR datain(57) ¥OR datain(59)xor datain(60) Z0R datain
u\jﬁmlhe e - H3T
Hvlmp\cmcrt Design el T
non 5 . 27 pd <= datain(2) XOR datain(3) XOR datain(4)Z0R datain(8) ZOR datain(9) XOR datain(10) XOR data:m(]]) H0R datain(l15) ZOR datam|16]
{I AR S\ AT =4 L1} Aammdw /2A) VAN dasaiw !B} VAT dassiwl/%8) AN dasmin 1301 PAN dasain 241 AN dasadw (3%} VAN dassdwl 122) VAN dawmin 304 Amemiw
¢ »
"'f Processes o L X .
What's Newin|SE Design Suile 101 | Design Sunmayy | (W) HAMMINGEAENCODER vhd
Started ! "Launching Design Summary®. A
Started ! "Launching ISE Text Editor to edit HANNINGE4ENCODER.vhd".
v
])
5] Coneole eEnus 1\ Wamings @Tc\sheﬂ g4 Fnd mFies
CAPS|NUM| SCRL LniCald |YHOL

Current Simulation
Time: 1000 ns

B hamou 71

Figure (3) Hamming Code Generation for 64 Bits in Hexadecimal Form

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
31

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL

ORI | e o e o s b @b W e
Time 1000 00ns §10ns — %20ns — %30ns %40ns %60ns %G0ns %f0ns B80ns 990nst000

mnnmnnnmnnnnnmnmmm
o detainl 64

B et 1] T 000D OO0 DA O DDA DDA DA DA O OA DI AN

Figure (4): Hamming Code Generation for 64 Bits in Binary Form.

~hamenc
— datain(1:64) hamout(1:/1) —

Figure (5): Schematic Circuit Diagram of Hamming Encode.

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
32

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL

(ol+ e[vfof[ofv o[+ ol s ols o] t[of ol sfofs]ols]o]v]a[ulofifo] tfo[]oftfolsfofvfofsfefs]of viafuols]olbfofs]ofifofs[a[s[o]i]0]}]
FTCP S LIEDNOONG SN ER AN IR AR KA LRI I DON O I EC RS ELESNBBOR

PLFD TEN OO
[[B0 EDEDEOE DODEDHOEDEDEEEE DOEBEDDDEDEBEDEDDDENDDEDEREDDEDNE DEDRDED

3000 SNTAIAH N NOLLDJ¥E00 ONY NOLLZLA0 BOWYIY ¥LW WiV

HOWY3 ON JuV 3H3HL

0000000

[0]1 __u__u_ __:__;__..____“____ ___a__”___:_,_u_ _ﬁ___:___o___;__ﬁ_,_:___:_______.______,___n___n___n________a_._____:___:_::_________________..__:__ﬁ_:__:_:____
ua a7]

e e e O el e e e e e e e e e e

el ofol _n___,_ﬂ___g___ ___ﬁ__u_:a::___a_:__:__n___:___p___,_H_F_u_ [ofefofefofu]alt _n___D___D___n____a____:___u_:_n__:__F_E:___”_:__u___ﬁ____

t+++t+t4+14tt e t

g o o ol) t

(ol __u___:___:_:g___g________n__u____u:__:__a::___n_____u__;___:_“::_:n:__u__:____u:__:__o__:____”___;___n__ __“_,__”_____._:_“___u____u____:_:___
Ha ® M W

t+11 gl +ttt¢ +tt4 ++t1 gl ol §

(of+fofof v[ofu o[uyufeolufal o] Joyejo]+efuio]+falwlefs[oje] 1jofwfef+fofefof¢fofufofeiofufofeofvlal:[ofwlafsfofefolrofefofo]s afelofi[ofb]
wa = -] G
y s - - A s 4

(el +foof sfoufvjof o] v of¢ o] efufofufofufofelofvfefufofuiofuf +jo]+[o]efoefofvfofe ol o] fofejoiejolefofsufsfofsjajsjolrjofefsiofefofhlo]]
: e]]

+ + + *+t 4+ + + ¢+ + + ¢+ + 4+ 4+ ¢+ + + + + + ¢+ + ¢+ + ¢+ + ¢+ ¢+ + + ¢

IH- 00 OOENE ___DI_;::_ ININDNDNBND ODEBNENDNDNBNDNNOBNNNDNBNENNNNE BONNDOD
LB AOLLETHEL W GEOLLLEE AN R e O P O PO P D IC NN RN
HONNT ON HLLIM 3000 SNININYH RSN WIVD 03A1103Y JHL

Figure (6): Hamming Code Detection Method for 64 Bits with no Error State

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015

33

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL

i Fle Edt View Project Source Process Window Help

v

Q

v

-][] []

BEE Sz HALLOO

9 ENTITY hamdec IS

13 END hamdec;

<

Ef! Piocesses

Started :

Wvhd”

£ Design Summary

"Launching Design Sumwary”.

Started : "Launching ISE Text Editor to edit yt.whd".

Console

@t

A\ Wamings

@ Telshel

% Find n Files

0P HS LiADEX we QiPLPHALD (A BB DDA M E[F
PE R 2 AR RN
2 library IEEE:
Sources for. | Implementation & 3 use IEEE.STD_LOGIC 1164.ALL:
E]HAMMINGdecodzr4 4 use IEEE.STD_LOGIC ARITH.ALL:
B 3 we3s200-40256 5 use IEEE.STD_LOGIC UNSIGHED.ALL:
[igleitshamdec - verl (yt.vhd) &
2
&

-- HAMNING DECODER VHDL CODE

10 FORT{hamin : IN BIT VECTOR(1 TO 71};
11 datmout : OUT BIT VECTOR{1 TO &4); --
12 ded, ne :OUT STD_LOGIC j:

--diagnostic outputs

--no errors

14 ARCHITECTURE verl OF hamdec I3
15 BEGIN
= i , 16 PROCESS {hamin)
(18 Sour | 3 i | g Srope] [y Litxe 17 VARIABLE syndrome : BIT VECTOR(7 DOUNTO 1);
| P 16 BEGIN
Processes for. hamdes - verl ~ 12 —-generate syndrome Dits
> 20 syndrome (1) := hamin(1)
[Add Existing Source e oyndrome (2) hemin (2)
1 Create New Source 8 ayndrome (3 hamin (4)
E View Design Summary 23 syndrome (4) := hamin (8}
=% Design Uitities 24 syndrome |5}
B % s Constiainis 285 syndrone | &)
i B\ Sonthesize - (ST 46 syndrome (7} :
©€Q Implement Design 37
R v 25 IF {syndrome = "00000007) THEN
< 2n LA

ZOR hemin(3] XOR hemin(5) XOR hamin(7)XCR hemin(9) XOR hamin{11l) ZOR hawin(13) XOR hamin{15] XOR hamin
ZOR hemin(3] XOR hemin(6) XOR hamin{7)XOR hemin(10)XCR hemin{11) ZOR hamin(14] X¥OR hamin{15) XOR hamin(:
ZOR hemin(5) XOR hemin{6) XOR hamin{7)XCOR hemin(12)XOR hemin{13) ZOR hamin(14] XOR hamin{15) XOR hamin(:
ZOR hemin(9) XOR hemin{10) XOR hemin(11)XOR hamin{12) ZOR hamin(13)ZOR hewin(14) ZOR hamin(15) XOR hami
= hemin{16) OR hemin{17) XOR hamin(18) XOR hamin{19]XCR hemin(20) XOR hamin(21] XOR hamin(22) XOR hamin(23| XOR har
hamin(32) ¥OR hamin{33) XOR hemin(34) XOR hemin{35|XOR hemin(36) XOR hamin(37]XOR hamin(38) XOR hamin{39) XOR har
hamin (64) XOR hamin({65) XOR hamin(66) XOR hemin{67]XCR hemin(68) XOR hamin [69) XOR hemin(70) XOR hamin(71};

CAPS |NUM | SCRL [Ln 11 Cal 46 [WHDL

Current Simulation

Time: 1000 ns

Figure (8): Hamming Code Error Detection and Correction for a Single Error in
Hexadecimal Form (With no error state).

Current Simulation
Time: 1.45431e+09 n

Figure (9): Hamming Code Error Detection and Correction for a Single Error in Binary
Form (With no Error state).

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015

34

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL

o[l afofulofulal ol alolalol alolul ol alwlalol clafulolalalalolclolal ol el ol ol alolulolalolalal e ol ulalalalalalalol ol u]oltlalt
TEEFS Y L8 MTIMOEMIN AT TEHENTERKETITERAX SRETTTOERSIFIEaEEEERsBoRERDIION

WIV TWNBO

| 0 000 DNDODED ENDDODENENENEDE DEDEDDDENEDNENEDEDNNDDEDNENENO0NED ODODBDOEL LR

3007 SNTIVYE NI NOLLIZEB00 ONY N0 BO%Y 3LV WIWD

3;”;::m:m””:n:__;_uﬁi;enzzm_t__:”_T__;_:TE;@”:__“:m_:_diﬂcn_::u_ﬁ__Lg:_::qt_i:
By # ¥ e i B

T T

[100000

ofefufofvjofeftfoltieltieftfojojtioftioftiafuioftfoltfolt]e] 1 NupeipeiRRoirieRrRrirpePrPebr s iR e e e R e

pitfajriefrinfe
g # g

d W

ol tfrfef1]olt el t[olel el elalnlol el ol ulol sl ol e ol el vlol] el tholalolalolal ol ol v obelelelalalolvhalalol ilwl tlals]e

M IRONNANE
il

e

H__.._..”___”_:_H____:_____:___:_o__“__”__.“_..:..:__::_.:____:___”__”__“___u__:__:___._:_.___.“___“_.“H__;___:_____:____:_._.m__”___“___“_..
[T [T g B [

oftfafelafel el tJel tToTaTw Tl ol tTol tTalaToa] ol eal tTolelolal tToltleluRalala] tToeToT e alcTol tTal 1] el aloTedol t]e] e{efrlaltTal o] tTel 1 Ta]a]a]u

¥ ¥ i i i

H________:.___:_____._:_:.___:_._:_:_.___Q__.___:____:__::____:m_:.__::.::_:___::_:_____,._____::__:_._:__:.___:._:_:_____:
LR S i 0 e

(ol efef e felofufofwl ol opwf clofofedefo] ol ofnfofoe]ofalolelebo] ool ofwf oie] ohof oo ool ofw)olwloie] olafolo]ofal ofo] cfafow]]alalelafa]efe]a]n
T # T o W

i i ¥ o B B ' v . B i 5 ' # 5 s o ' 5 o B B s 5 o ¥ 5 s s o ' 5 B 3 s

H

| 0 D00 DEO0EDED BHEDEDEDHDEDEDE DEDEDDDEDEDEDEDDDDDEDDDNDENENEE BNNDDOL
TTEPES LS 6NUNAHANNNAR LR AR UNR BN A AR SR SR EN TR IR A RREE SR SR SREBEDORSWOBENL
BO0UET HIM 200 SNININYH SNTSN VIR G20 R

Figure (10): Hamming Code Detection Method for 64 Bits with Error State.

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015

35

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL

Time: 1000 ns

Current Simulation : B(/ il
: 00pe910ns 920ms 930ns S40ns O%ns 960ns 970ns 980ns 990ns1000
|\|\||\|\m|l|\|\|\ RERRNARENRENEY

Figure (11): Hamming Decoder for a Single Error with Error Received Data (Error at Third
Bit) in Hexadecimal Form.

= . _Detect Error
Current Simulation] = o :
'“meﬂ)oo ns “[H[I wins 5 .'_._'\ _— N5 “’1”{\ ’l IH| '{ H[| N“II H'HU

Figure (12): Hamming Decoder for a Single Error with Error Received Data (Error at Third
Bit) in Binary Form.

— hamin(1:71) dataout(1:64) ——
hamdec ded ——

ne ——

Figure (13): Schematic Circuit Diagram of Hamming Decoder.

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
36

DESIGN OF HAMMING CODE FOR 64 BIT SINGLE ERROR DETECTION AND CORRECTION USING VHDL

FES| aladiuly 3 jdal) Uadl) datlaa g ciliagy e 64 4 (Hamming) B A ataal
(VHDL)

rlua 53 anai
olls als il A€ s g IV duatigh) e caelise o y2a

- LAY

sac sl saaly Uad Call aadis o oSy s asganas Uadl) ol 4 o (Hamming) sis
O e 5 Alle el an by aals cad sy 3 Uadll e CaiS b Al da AL o (o Uadl
alivsdd)) Juspall (ge bl Jis 5 oV Laiy) dakil 3. AT L Slea oo 480D clld) Ji 2 Levie ¢aaas
Glaglaall e Hdiall Je (Hamming) 3)as Jasd .o liagall o alill ajes 8 lly ¢ J8U) dansll Pla
Gllall el 5 4l ¢ 7 Al Sy (A€ Caay cCand) 138 aiallaa s tadll Cali€) DA o 4LaY)
Sl by ae (64 32 <16 8 4 2 (] =) gilsall i AELaY) Gl oda Ly 64 J il LY
AL Gilagajall LIS Ay <y 71 @bl Alule dead (7 oo 2 64)loshealy clibal) Ji a3y . LY
de o% eliagdall cuw Al Gl e eiag Cu 7T @bladl Jaad 88 DY) Adadi die L Jupall die
i adl) e S Jla s Y of @bl b Uas allin (IS 13) aaas (Hamming) 46 alasiuly 5 Sl
3ISlaal aadiuy angie sa5 . VHDL 5lSladd XILINX ISE 10.1 aoiiul ba . 4spaa 5 Uadll adse o gial)
obsall dggy (Hamming) 3yai0 Judially Jujall apena o3 Gl 1380 A ¢ Sball aws)l) Jalada syl VHDL 45l
A SN sl apenall p2855 s Al ag (VHDL) alasinl,
oy AU Clasaially Uadll caling) Ayl (Ul b€l (Uadll mpmaas ((Hamming) s,ad syl LS|
+Sladl) XILINX ISE 10.1 «VHDL 4l ¢)il

Diyala Journal of Engineering Sciences, Vol. 08, No. 03, September 2015
37

