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ABSTRACT: - Rotary machineries are basic components used in many industrial 

applications. A simple examples uses these machines are simple electric fans while 

complicated uses these devices included in missile and aircrafts. 

The aim of this research is to develop an Intelligent Neuro-Fuzzy control algorithm to 

guide and control accurately these rotating devices so that it will detect precisely the faulty 

components during the operation or in both preventive and corrective maintenance 

procedures. This online intelligent monitoring algorithm classifies status of the device into 

three indicators :(Safe, Possibly damaged or Damaged). The processes of classification 

consider all input variables with high effectiveness on diagnostic output state. The 

contribution of this paper is to introduce novel intelligent monitoring and controlling 

algorithm that uses (Two) predicted indices instead of one as in the previous research articles. 
 

1. INTRODUCTION 
Diagnoses of the faults are a series of processes with two steps: features extraction 

representation and pattern classification. Features extraction is a mapping process from the 

measured signal space to the feature space. Representative features associated with the safe 

condition of a machinery component (or subsystem) are extracted by using appropriate signal 

processing techniques. Pattern classification is the process of classifying the characteristic 

features into various categories. Traditional approach widely used in industry, relies on 

human expertise to relate the vibration features to the faults. This method, however, is boring 

and not always reliable when the extracted features are contaminated by noise. Also, it is 

difficult for a diagnostician to deal with the confused properties if multiple features are used. 

Data-driven diagnostic classification can be performed by reasoning tools such as neural 

networks, fuzzy logic, and neural fuzzy synergetic schemes. 

There are some techniques have been proposed for machinery condition monitoring, it 

still remains a challenge in implementing a diagnostic tool for real- world monitoring 

applications because of the complexity of machinery structures and operating conditions. 

When a monitoring system is used in real-time industrial applications, two major problems 

will appears (missed alarms and false alarms).  

To overcome these challenges is the objective of this research work to develop a new 

technique, an integrated classifier, for real-time condition monitoring in, systems. In this 

novel classifier, the monitoring reliability is enhanced by integrating the information of the 

object’s future states forecast by a multiple-step predictor; furthermore, the diagnostic 

scheme is adaptively trained by a novel recursive hybrid algorithm to improve its 

convergence and adaptive capability. 

The procedure as follows: description of integrated classifier, where the multiple-step 

predictor and monitoring indices are described then discusses the hybrid online training 

algorithm. At last the viability of the proposed integrated classifier is verified by 

experimental tests corresponding to different gear conditions. 
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2. SYSTEM CLASSIFIER 
       The objective is to introduce a diagnostic classifier that integrate the most important 

features obtained by choosing an appropriate signal processing techniques. The goal is to 

make a more positive evaluation of the health condition of the mechanical parts of interest. 

The diagnostic reliability in this suggested classifier will be enhanced by implementing the 

predicted states of the object’s conditions. The forecasting in this integrated classifier is 

performed fig (1) for input variables so as to make it easier to track the error sources in 

diagnostic operations.  

       The developed classifier will be able to facilitate the incorporation of diagnostic 

knowledge from expertise and to extract new knowledge in operations by training. The 

diagnostic classification is performed by fuzzy logic whereas an adaptive training algorithm 

is used to match the fuzzy system parameters and structures. The conditions of each 

machinery part is classified into three categories: healthy (C1), possible damage (C2), and 

damage (C3), respectively. {x1, x2, …, xn} are the input variables at the current time step. 

Three membership functions (MFs), small, medium, and large, are assigned to each input 

variable with the initial states as shown in Fig. 1 where the fuzzy completeness (or the 

minimum fuzzy membership grade) is at 50%. 

The diagnostic classification, in terms of the diagnostic indicator y, is formulated in the 

following form: 

Rule: ( x1 is A1 j ), ( x2 is A2 j ), . . . and ( xn is Anj ) ⇒ ( y ⊂ Sj with wj ) ……..(1) 

where Aij are MFs; i = 1, 2, …, n, j = 1, 2, …, m, m denotes the number of rules; Sj 

represents one of the states C1, C2 or C3, depending on the values of the diagnostic indicator. 

When multiple features (input indices) are employed for diagnostic classification, the 

contribution of each feature association to the final decision depends, to a large degree, on the 

situation under which the diagnostic decision is made. Such a contribution is characterized by 

a weight factor wj which is related to the feature association in each rule. The initial values of 

these rule weights are chosen to be unity; That is, all input state variables have initially 

assumed to have identical importance or robustness to the overall diagnostic output. 

Similarly, the diagnostic classification based on the first predicted monitoring indices, { x'
1, , 

x'
2 ,…, x'

n }, is formulated as: 

Rule: (x'
1 is A1 j ) ,( x'

2 is A2 j ), … and (x'
n is Anj ) ⇒ ( y' ⊂ Sj with wj )  ……. (2) 

where y′ is the diagnostic indicator based on forecast input variables. 

Also, the diagnostic classification based on the second predicted monitoring indices, 

{x''
1, x2

'',…..x''
n}, is formulated as: 

Rule: (x''
1 is A1 j ) ,( x''

2 is A2 j ), … and (x''
n is Anj ) ⇒ ( y'' ⊂ Sj with wj ……. (3) 

  

        The number of rules is associated with the diagnostic reasoning operations of input state 

variables. In general, if all monitoring indices are small, then the object is considered healthy 

(C1). Otherwise, the object is possibly damaged. In this case, the diagnostic classification 

indicator y represents faulty condition only. Different feature rule corresponds to a different 

confidence grade wj in diagnosis. Fig. 2 schematically shows the network architecture of this 

integrated classifier. Unless specified, all the network links have unity weights. 

         The input nodes in layer 1 transmit the monitoring indices {x1, x2, …, xn} or their 

forecast future values{ x'
1, , x

'
2 ,…, x'

n }& {x''
1, x2

'',…..x''
n} to the next layer. These three sets 

of monitoring indices are input to the network and processed separately. 

Each node in layer 2 acts as a MF, which can be either a single node that performs a simple 

activation function or multilayer nodes that perform a complex function. The nodes in layer 3 

perform the fuzzy T-norm operations. If a product operator is used, the firing strength of 

rule is:       

       η=∏ 𝑨𝒏
𝒊=𝟏 ij(xi) ……………(4) 

 

       η'=∏ 𝑨𝒏
𝒊=𝟏 ij(x

'
i)    ……………(5) 
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       η''=∏ 𝑨𝒏
𝒊=𝟏 ij(x

''
i)   ……………(6) 

Where Aij denote MF grades showing in fig(2). 

       The process of defuzzification is achieved in layer 4. By normalization, the faulty 

diagnostic indicator will be: 

                     y= 
∑ 𝛈𝝎𝒎 

∑ 𝛈𝒎 
  …………….. (7) 

 Similarly, the fault diagnostic indicator based on forecast inputs will be 

                    y'= 
∑ 𝛈′𝝎𝒎 

∑ 𝛈′𝒎 
 …………….(8) 

                    y''= 
∑ 𝛈′′𝝎𝒎 

∑ 𝛈′′𝒎 
 …………….(9) 

       The states of the diagnostic indicator y ,y' and y'' are further classified into three 

categories(NOTE: classification in normal cases each class takes ( 
𝟏

𝟑
 ), but for more accuracy, 

we suppose as follows: 

If     0 ≤ y ≤ 0.25     → Healthy (C1)  

If   0.25 ≤ y ≤ 0.50     → possibly damaged (C2) 

If   0.50 ≤ y ≤ 1        → damaged (C3) 

      The final decision of the part is made by: 

A- If (y⊂ C1 & y'⊂ C1 & y''⊂ C1) or (y⊂ C2 & y'⊂ C1 & y''⊂ C1) then healthy (C1) 

B- If (y⊂ C3 & y'⊂ C3 & y''⊂ C3) or (y⊂ C2 & y'⊂ C3 & y''⊂ C3) then damaged (C3) 

C- Otherwise possibly damaged. 

 

3- ESTIMATION OF INDICES 
3.1 Monitoring indices 

      The most popular machinery defects are because of transmission systems (gears and 

bearings). The simulation example used in our work is the gears to illustrate how to apply the 

proposed integrated classifier for machinery condition monitoring. 

      In operations, the fault diagnosis of a gear train is conducted gear by gear. Because the 

measured vibration is an overall signal contributed from various vibratory sources, the first 

step is to differentiate the signal specific to each gear of interest by using a synchronous 

average filter. By this filtering process, the signals which are non-synchronous to the rotation 

of the gear of interest are filtered out. As a result, each 

gear signal is computed and represented in one full revolution called average of signal which 

will be used for advanced analysis by other signal processing techniques. 

Several techniques have been proposed in the literature for gear fault detection. Due to the 

complexity in the machinery structures and operating conditions, each fault detection 

technique has its own advantages and limitations, and is efficient for some specific 

application only. Consequently, the selected features for fault diagnostics should be reliable, 

that is, sensitive to component defects but immune to noise. In this case, three features from 

the information domains of energy, amplitude, and phase are employed for the diagnosis 

operation: 

A. Wavelet energy function, using the overall residual signal which is obtained by bandstop 

filtering out the gear mesh frequency (fRN)and its harmonics, where fR is the rotation 

frequency (in Hz) of the gear of interest and N is the number of teeth of the gear. 

B. Phase demodulation, using the average of signal. 

C. Beta kurtosis, using the overall residual signal. Knowing that the beta kurtosis is the 

normalized fourth moment of a signal, in terms of the beta function instead of a generally 

used Gaussian function.  

       The monitoring indices are determined to quantify the feature characteristics. Each index 

is a function of two variables, magnitude and position. The magnitude of an index is 

determined as the normalized relative maximum amplitude value of the corresponding 

reference function; the position is where the maximum amplitude is located. Usually, the 
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maximum amplitude positions in these reference functions do not synchronized exactly due 

to the phase lags in signal processing. 

       Based on simulation and test observations, the effective window is determined by four 

tooth periods so if all indices are located within one effective window, one set of inputs x1, 

x2 and x3 is given to the classifier. Otherwise, if three indices are not within one effective 

window, the target has no fault or has more than one defect; more than one set of inputs 

should be provided to the classifier. For example, if x3 does not fall within the window 

determined by x1 and x2, two sets of inputs will be given to the monitoring classifier: The 

first input vector is { x1, x2, x3}, where x3 is computed over the effective window 

determined by both x1 and x2; The second input vector is { x1, x2, x3}, where x1 and x2 are 

determined over the influence window around x3. 

       Fig. 3 illustrates an example of the reference functions corresponding to a healthy gear 

with 41 teeth. Fig. 3a shows part of the original vibration signal measured from the 

simulation setup. Fig. 3b represents the signal average of the gear of interest, which is 

obtained by synchronous average filtering; each wave represents a tooth period. Figs .3c to 3e 

represent the resulting reference functions of the wavelet energy, beta kurtosis, and phase 

modulation, respectively. It is seen that no specific irregularities can be found from these 

reference functions for this healthy gear 

      Fig. 4 shows the processing results due to a cracked gear with 41 teeth. It is impossible to 

recognize the gear damage from the original signal (Fig. 4a). A little signature irregularity 

can be recognized around 200° in the signal average graph (Fig. 4b). However, this gear 

damage can be identified clearly from the proposed reference functions (Figs. 4c to 4e). 

Although the maximum peak positions are little different from one graph to another, these 

peaks occur within one influence window (four tooth periods). 

     Fig. 5 illustrates the processing results for a chipped gear (with 41 teeth). Some signature 

irregularity can be recognized around 200° in the signal average graph (Fig. 5b) due to this 

gear tooth damage. The defect can be clearly identified from other three reference functions 

(Figs. 5c to 5e), and the monitoring indices are located within one effective window (four 

tooth periods). 

3.2 Prediction of the monitoring indices 

     Prediction system is the process to guess the future states in a system based on available 

observations. The classical methods are the use of stochastic models which are usually 

difficult to derive for mechanical systems with complex structures. 

 More recent research has focused on the use of data driven paradigms, such as neural 

networks and neural fuzzy schemes. In this work, the multi-step-ahead prediction of the input 

variables (indices) is performed by the use of a predictor as suggested in whose effectiveness 

has been verified: it can capture and track the characteristics of a system quickly and 

accurately comparing to other classical forecasting schemes. 

Given a monitoring index X1 , or X2 , or X3 , if [v0 v−r v−2r v−3r ] represent its current and 

previous three states with an interval of r steps, r-step-ahead state(V'
+r)& (V''

+r ) are estimated 

by a fuzzy formul 

Rule : If ( v0 is B0k ) and (v−r is B1k ) and (v−2r is B2k ) and (v−3r is B3k ) 

Then V
'
+r = C0V0 + C1 v−r + C2 v−2r + C3 v−3r +C4   ………..(11) 

     V
''

+r = C0 V
'
0 + C1 V

'
−r + C2 V

'
−2r + C3 V

'
−3r +C4………..(12)  

       Where B are MFs, Ci are constants, i = 0, 1, ..., 3; k = 1, 2. Fig. 6 illustrates its fuzzy 

reasoning architecture. 

        This predictor has a weighted feedback link to each node in layer 2 to deal with time 

explicitly as opposed to representing temporal information spatially. The context units copy 

the activations of output nodes from the previous time step, and allow the network to store 

actions from the past, which forms a context for current processing. This function of recurrent 

networks is valuable for predictors with limited and step inputs (i.e., r > 1 ), to provide more 
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information to the network so as to improve forecasting accuracy. If two sigmoid MFs are 

assigned to each input variable, the node output at the kth process step will be the activation 

function. If a max-product operator is applied in layer 3, and a centroid method is used for 

defuzzification in layer 5, by some related fuzzy operations, the predicted outputs( V'
+r ) & 

(V''
+r ) can be determined by: 

    V'
+r = ∑ 𝝁ˉ(𝟏𝟔

𝒋=𝟏  C0V0 + C1 v−r + C2 v−2r + C3 v−3r +C4 )…….(13)  

   V''
+r =∑ 𝝁ˉ(𝟏𝟔

𝒋=𝟏  C0 V
'
0 + C1 V

'−r + C2 V
'−2r + C3 V

'−3r +C4)…..(14) 

     

Where 𝝁ˉ =
𝝁𝒋

∑ 𝝁𝒋𝟏𝟔
𝒋=𝟏

 represent the normalized rule firing strength and 𝝁𝒋 is the firing strength 

of the jth rule. 

The fuzzy system parameters are trained by using a hybrid algorithm: that is, the premise 

parameters in the MFs are trained by a real-time recurrent training algorithm whereas the 

consequent parameters C in Eq (11&12) are updated by least squares estimate.  

 

4. THE CLASSIFIER TRAINING BY ONLINE  
        In order to achieve the desired input-output mapping the developed diagnostic classifier 

should be optimized. Several training algorithms have been proposed. In offline training, 

representative data should cover all of the possible application conditions; such a requirement 

is usually difficult to achieve in real-world machinery applications because most machinery 

operates in noisy and uncertain environments. 

       Furthermore, machinery characteristics may change suddenly, for instance, just 

after repair or regular maintenance. Therefore, an adaptive training algorithm is preferred in 

time-varying systems to accommodate different machinery conditions. 

       In this case, a hybrid method based on recursive Levenberg-Marquet (LM) and LSE will 

be adopted to train the integrated classifier. Such a training approach possesses randomness 

that may help to escape certain local minima. 

 

5. THE TEACHING MF PARAMETERS TRAINING 
       The nonlinear teaching MF parameters will be trained by adopting the recursive LM 

method. The general LM algorithm possesses quadratic convergence close to a minimum. Its 

convergence property is still reasonable, even if the initial estimates are poor. In addition, the 

LM algorithm has been proven globally convergent in many applications by properly 

choosing the step factors. For a training data pair [ x,d], the inputs are x= {x1, x2, x3}; d are 

the desired outputs {0, 0.5, 1} as x belongs to C1 , C2 and C3 , respectively. The error function 

with respect to adjustable MF parameters 𝜽p at the current time instant p is: 

      E(𝜽p) = 
𝟏

𝟐
∑ [𝒚𝒑(𝜽

𝒑
𝒑=𝟏 𝒑) −  𝒅𝒑]…………………..(15) 

Where yp(θp) is the pth output in Eq. (7). p = 1, 2, …, P; dp is the desired output.  

The recursive LM algorithm can be represented by: 

     Θp+1 = 𝜽p+ϕp Jp rp ……………………….(16) 

 

      For real-time applications 𝜽o=0, ϕp  is a covariance matrix with initial condition ϕo= ρI, 

where ρ is a positive quantity and I is an identity matrix. 

     By simulation tests with the requirements of the recognition rate ≥ 85%, reasonable 

training speed and accuracy, the following initial values are given to the related parameters in 

this study: η = 0.01 with tested range of η ∈[0.005, 15] ; ρ = 103 with tested range of ρ ∈[102 

, 105 ]. 
 

6. HYBRID TRAINING METHOD IMPLEMENTATION  
       In implementation, inside each training epoch, the nonlinear MF parameters in the 

classifier are optimized in the backward pass by using a recursive LM method, whereas 

consequent linear rule weights are updated by LSE in the forward pass. On the other hand, 
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after training or real applications over some time period, if the updated rule weights wj are 

sufficiently small (e.g., wj < 0.01), the contribution of the related rule to the final 

classification operation can be neglected, and that rule can be removed from the rule base. 

 

7. SIMULATION EVALUATION 
       To verify the viability of the proposed classifier, five gear cases are tested in this study as 

represented: 

a. healthy gears (C1); 

b. gears having a tooth crack with 15% (C2) and 50% (C3) tooth root thickness; 

c. gears having a chipped tooth with 10% (C2) and 40% (C3) tooth surface area removed. 

      These demonstrated faults belong to localized gear defects. From the signal property 

standpoint, when a localized fault occurs, some high-amplitude pulses will be generated due 

to impacts, which are relatively easier for a signal processing technique to recognize. When a 

localized fault propagates towards a distributed defect, the overall energy of the fault will 

increase, but it often becomes more wideband in nature and difficult to detect in the presence 

of the other vibratory components of the machine. This example identifies a characteristic of 

currently used fault detection techniques: It is usually easier to detect a distinct low-level 

narrowband tone than a high-level wideband signal in the presence of other signals or noises. 

Even though a distributed defect, such as pitting and wear, is initiated from a localized fault 

which is detectable as an incipient defect, most currently available vibration-based signal 

processing techniques cannot effectively detect an advanced distributed fault which, however, 

can be diagnosed based on other information carriers, such as acoustic signals. To make a 

comparison, the diagnostic results from the following three classifiers are also listed: 

1. A pure fuzzy system with a similar reasoning architecture as in Fig. 2 but without the use 

of predictors. The rule weight factors are chosen as those in the integrated classifier after 

initial training. 

2. Classifier-1: A classifier with a similar reasoning architecture as in Fig. 2 but without 

predictors. Its MF parameters are trained by a gradient-LSE algorithm. 

3. Classifier-2: Like Classifier-1, but trained by the hybrid algorithm of the recursive LM and 

LSE. Given the network architectures, the initial parameters of three adaptive classifiers 

can be primarily trained by using some data sets collected in previous tests on the same 

test apparatus, or be initialized by experience. Then these classifier parameters are 

optimized in the following online training processes. 

        During online tests, motor speed and load levels are randomly changed to simulate 

general and unusual machinery operating conditions. The tests are conducted under load 

levels from 0.5 to 3 hp, and motor speeds from 50 to 3600 rpm. 

        In online monitoring, based on test schedule and load/speed change frequency, the 

monitoring time-interval is set at 15 minutes; that is, all the monitoring schemes are applied 

automatically every 15 minutes for condition monitoring operations. Three steps-ahead 

predictors (i.e., r = 3) are used in the integrated classifier. The selection of data size depends 

on noise reduction requirement; usually the data for the gear with the lowest speed should 

cover more than 100 revolutions. For example, if the slowest gear speed in the gearbox is 

1200 rpm, the data acquisition process takes at least 5 seconds (15 seconds in this case). The 

monitoring is performed gear by gear. Three examples corresponding to healthy, cracked and 

chipped gears (all having 41 teeth) have been illustrated in Figs. 3 to 5, respectively. 

       Each healthy gear condition is tested over 24 hours whereas each faulty gear condition is 

tested over 50 hours. In total, 386 data pairs are recorded for testing purpose. Table(1) 

summarizes the classification performance by different diagnostic schemes. 

    The fuzzy classifier (with one predicted monitoring indices) records 15 missed alarms and 

37 false alarms, with an overall reliability of 85.3%. Its relatively poor diagnostic 

performance is mainly due to the lack of learning capability. In addition, fixed or human-

determined system parameters are subject to variations and are rarely optimal in terms of 
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reproducing the desired classification outputs, which results in the fuzzy classifier not being 

optimized under different operating conditions, while for two predicted monitoring indices 

the results are 13, 30 and 89.2% consequently. Classifier-1 records 7 missed alarms and 21 

false alarms, with an overall reliability of 92.5%, while for two predicted monitoring indices 

the results are 7, 18 and 94.4% consequently. 

      Classifier-2 records 7 missed alarms and 17 false alarms, with an overall reliability of 

93.6%, while for two predicted monitoring indices the results are 5, 13 and 96.3% 

consequently. The developed integrated classifier generates 3 missed alarms and 7 false 

alarms, with an overall reliability of 97.6%, while for two predicted monitoring indices the 

results are 2, 3 and 98.8% consequently. 

       The developed integrated diagnostic classifier provides a robust problem solving 

framework. Machinery conditions vary dramatically in real-world applications, and new 

system conditions may occur under different circumstances. With the help of an adequate 

learning algorithm, new information can be extracted from online training, and the diagnostic 

knowledge base can be expanded automatically to accommodate different machinery 

conditions. 
 

8. CONCLUSIONS 
       In this paper, an integrated classifier is developed for gear fault diagnostics. The purpose 

is to provide industries with a more reliable monitoring tool to prevent machinery system 

performance degradation, malfunction, and sudden failure. The classifier can integrate 

different features for a more positive assessment of the object’s health condition. The 

diagnostic reliability is improved by properly integrating the future states of the gear, which 

are forecast by multi-step predictors for more than one predicted states. An online hybrid 

training technique based on a recursive LM and LSE is adopted to improve the classifier’s 

convergence and adaptive capability to accommodate different machinery conditions.  

       The viability of the new integrated classifier has been verified by simulated tests 

corresponding to different gear conditions. On the other hand, it should be stated that 

although satisfactory results have been achieved based on the developed integrated classifier, 

its network architecture is relatively complex which may not be easy for implementation for 

some real-world applications. Future research is to develop novel evolving fuzzy or neuro-

fuzzy classification schemes for more effective diagnostic operations. New training 

algorithms will be proposed to further improve the training convergence. The proposed 

techniques will also be employed for real world industrial applications in vehicles, wind 

turbines, and manufacturing facilities. 
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Table (1): Comparison of the diagnostic results from different diagnostic schemes with ONE 

predicted monitoring indices (old research). 

Diagnostic Model Healthy Gears 

 

M.A       F.A 

Cracked Gears                   
 

Chipped Gears Total Accuracy 

Fuzzy System   0           13  12          16   3            8 85.3% 

Classifier -1-   0             7   6            9   1            5 92.5% 

Classifier -2-   0              5   7            8   0             4 93.6% 

New Classifier   0              2   3              3   0             1 97.6% 
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Table (2): Comparison of the diagnostic results from different diagnostic schemes with 

TWO predicted monitoring indices (our research).Knowing that M.A (missed alarm) & F.A 

(false alarm). 

Diagnostic Model Healthy Gears 

 

M.A        F.A 

Cracked Gears                   
 

Chipped Gears Total Accuracy 

Fuzzy System   0           11  11          14   2             5 89.2% 

Classifier -1-   0             6   5             8   1             4 94.4% 

Classifier -2-   0             3   5              7   0             3 96.3% 

Novel Classifier   0              1   2              1   0             1 98.8% 

 

 
Figure (1): The membership functions (MFs) for the input state variables 

 

 
Figure (2): The network architecture of the proposed integrated classifier 
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Figure(3): Healthy gear processing results : (a) Part of the original vibration signal; (b) 

Signal average; (c) Wavelet reference function; (d) Beta kurtosis reference function; (e) 

Phase modulation reference function. 

 

Figure (4): Cracked gear processing results: (a) Part of the original vibration signal; 

(b) Signal average; (c) Wavelet reference function; (d) Beta kurtosis reference function; (e) 

Phase modulation reference function. 
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Figure (5): Chipped gear processing results: (a) Part of the original vibration signal; 

(b) Signal average; (c) Wavelet reference function; (d) Beta kurtosis reference function; (e) 

Phase modulation reference function 


