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ABSTRACT: - The optimal control policies for the syndiotactic polymerization of styrene 

over silica supported metallocene catalyst, have been determined using a multiobjective 

optimization technique. Kinetics model (KM) and genetic algorithms (GA) were tested as 

tools for modeling and optimization of syndiotactic polystyrene (sPS) synthesis process. The 

dependence between the main parameters of the process and working conditions were 

modeled by using KM. To verify the KM, syndiotactic polymerization of styrene over silica 

supported metallocene catalyst was conducted. The validation results show that the KM 

predicts best polymerization reactor performance with an average absolute error less than 

15%. The KM is then included into an optimizing control scheme, which uses a genetic 

algorithm solving technique and a multiobjective function in a scalar form. Genetic 

algorithms based methodology provides accurate results, computing optimal values of 

decision variables, which lead to the maximum rate of polymerization and the desired value 

for molecular weight. The validation results in these optimum values are valid and the 

average absolute error less than 5 % of all responses. 

Keywords: Multiobjective optimization, Genetic algorithms, Kinetics model, Polystyrene, 

Syndiotactic Polymerization. 

 

1- INTRODUCTION 

Syndiotactic polystyrene (sPS) is a new polymeric material of industrial relevance, the 

high crystallization rate and the high melting point (270°C), make this polymer a crystalline 

engineering thermoplastic material with potential applications [1]. Syndiotactic polystyrene 

was first synthesized by Ishihara [2], using a soluble titanocene compound, and activated by 

methylalumoxane (MAO). Several styrene polymerization were carried out with supported 

metollocene catalyst, prepared by reaction of silica gel with MAO and then with metallocene 

catalyst [3, 4]. 

The optimization approach can have a significant effect on the polymer 

manufacturing process and economics. Polymer production facilities focus attention on 

improving the product quality and cost reductions [5]. In general, polymerization process 

optimization is naturally multi-objective, since it normally has several objectives that are 

often conflicting and non-measurable, which must be adjusting simultaneously. Therefore, 

solving such a problem cannot be devoid of difficulties, starting with the objective function 

formulating. It then proceeds with the choice of working procedure and the result selection 

from several options [6]. 

Multi-objective optimization can be defined as the problem of finding a vector of 

decision variables, which satisfies the constraints and optimizes a vector function whose 

elements represent the objective functions. In such cases, instead of obtaining a unique 

optimal solution, a set of equally good optimal solutions is usually obtained. There are 

referred to as Pareto sets [7]. A decision maker can choose any one of these non-dominant 
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optimal solution based on additional information [8]. So one can consider that the multi-

objective optimization is carried out in two phases: an objective or mathematical phase and a 

subjective or decision – making phase. Some examples of the vectorial approach of the multi-

objective optimization for polymerization reactors are given in [8, 9].  

Recently, new numerical algorithms have become widely established due to the fast-

paced progress in the availability of the computing technology. In particular, there is a newly 

found interest in the optimization techniques based on evolutionary algorithms, especially 

genetic algorithms (GA). Genetic algorithms have been successfully employed in a wide 

range of multi-objective problems because of their flexibility, global perspective and minimal 

requirements [10, 11]. 

Regarding the use of genetic algorithms in chemical process engineering, particularly 

in polymer reaction engineering, two research directions are the most popular within the 

scientific community: a) increasing the performance of algorithms that are already in use or 

enhancing their capabilities; b) applying genetic algorithms for different chemical process 

optimization. All the relevant work in this field has been surveyed the papers of Coello [12], 

Deb [6] and Coello [13] where both the advantages and disadvantages of different types of 

GA have been analyzed. 

Chakravarthy et al. [14] and Lee et al. [15] were the first to adapt simple GA, and 

used it to optimize polymer production using decision variables that are continuous functions 

of time. The optimization of the bulk polymerization of methyl methacrylate isstudied using 

the temperature history, to minimize the reaction time in a batch reactor, while 

simultaneously requiring the attainment of the design values of both the final monomer 

conversion and the number average chain length of the polymer product [14]. 

The genetic algorithms for an industrial ethylene reactor with a multi-objective 

optimization technique is applied to find a scope for further improvements and to detect a 

range of optimal solutions. They discussed in detail the effects of design and operating 

variables on the optimal solutions, and the generated results were compared with industrial 

data [16]. 

Furtuna et al. [17] applied neural network and genetic algorithm for a polysiloxane 

synthesis process. The algorithm provided optimum reaction conditions (reaction 

temperature, reaction time, amount of catalyst, and amount of co-catalyst), which maximize 

the reaction conversion and minimize the difference between the obtained viscometric 

molecular weight and the desired molecular weight. The used of the neural network made it 

also suitable to the multi-objective optimization of processes for which the amount of 

knowledge was limited.  

Sharifi, et al. [18] has been developed a genetic algorithm as an optimization 

procedure to predict the phase behavior of polymer solutions. The phase equilibrium 

diagrams of binary and ternary polymer solutions have been determined using the appropriate 

form of Flory–Huggins free-energy function for polymer solutions. The algorithm has been 

used to predict the phase behavior of the two polymer–solvent–non solvent systems as 

polystyrene-butanone-methanol and polystyrene-butanone-propanol at three different 

temperatures and results show good agreement with the experimental observations. 

This paper presents the use of kinetics model (KM) and genetic algorithms (GA) as 

tools for modeling and optimization applied to the syndiotactic polymerization of styrene.  

The objective function for the polymerization system is the minimization of the final reaction 

time, which leads to higher polymerization rate. The other objective included in the same 

function is the minimization of the polydispersity index of the polymer product. The rate of 

polymerization and molecular weight distributions were modeled by using KM. Then, the 

KM is included into an optimizing control scheme, which uses a GA solving technique and a 

multiobjective function in a scalar form.   
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2. EXPERIMENTAL WORK 
To verify the kinetics model (KM), batch syndiotactic polymerization of styrene over 

silica supported metallocene catalyst was carried out at the laboratory scale. 

 

2.1. Materials 

Styrene (Aldrich) was vacuum distilled over calcium hydride and activated alumina 

was used to remove inhibitor from the monomer. n-Heptane (Fisher Scientific) was used as a 

diluent and it was purified by 75 g of activated type 4 A molecular sieves in nitrogen 

atmosphere. IndTiCl3 (Indenyltitaniumtrichloride) (Aldrich) and methylaluminoxane (MAO, 

Aldrich) were used as-supplied without further purification. Silica gel Davison 952, 

(Aldrich,) was used as a catalyst support. 

 

2.2.Preparation of silica supported catalysts 

As shown in Figure (1), into 100 ml two neck round bottom flask, 0.056 gram 

IndTiCl3 followed by 43 ml MAO (10 wt %) in toluene solution was added. The mixture was 

stirred at 25 °C for 30 min. The IndTiCl3/MAO mixture was then transferred into another 

flask containing one gram of silica gel, dehydrated at 600 °C using a syringe while constantly 

stirred. The mixture was stirred then for 5 h. The solvent was evaporated at room temperature 

and a red free-flowing powder was obtained. The catalyst was stored in desiccators until 

used. The Al and Ti loadings measured by inductively coupled plasma emission spectroscopy 

(ICP) were 1.31 x 10-3mol Al/g catalyst and 2.74 x 10-4 mol Ti/g catalyst, respectively. 

 

2.3. Polymerization reaction  

Styrene polymerization experiments were carried out using a 250 mL reactor 

equipped with a cooling jacket and stainless steel agitator under nitrogen atmosphere. 

Predetermined amounts of monomer, solvent, catalyst, and MAO were charged into the 

reactor. After polymerization, the reaction mixture was removed from the reactor, washed 

with excess amount of acidified methanol 10 Vol % of hydrochloric acid, and dried. Since the 

reactor has no provisions for sampling during the polymerization, the polymer yield vs. time 

profiles were obtained by conducting the individual experiments with same reaction 

conditions but terminated at different reaction times. The polymerization rate values were 

determined by numerically differentiating a polymer yield vs. time curve. The number and 

weight average molecular weight were determined by gel permeation chromatography (GPC) 

with trichlorobenzene (TCB) using PLgel® 10µm MIXED-B column. Table 1 shows the 30 

experimental design matrix based on center composite design application (CCD)[19], with its 

corresponding responses for the rate of polymerization (Rp), degree of polymerization (Dp), 

and poly dispersity index (PDI). 

 

3. KINETICS MODEL (KM) 
The polymerization kinetics model is a key to understand and predict the properties of 

the produced polymer, thus it is a very important part of the modeling of polymerization 

reactor. To predict the polymerization rate behaviors in our experiments, we consider the 

following reaction kinetic model as shown in Table 2, where Co is the potent catalyst site and 

C* is the activated site. MAO is methylaluminoxane cocatalyst. Mc is the monomer 

concentration at the catalyst surface. Ln and Dn are the live and dead polymer chains of length 

n respectively. D* is the deactivated catalyst site. kj represents the reaction rate constant for 

each corresponding reaction [20]. 

 The rate of polymerization (Rp) is proposed due to the consumption of monomer 

concentration as well as the catalyst deactivation to follow the following form: 

 Rp = kp[M]c[C
∗]         (1) 
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where kp is the propagation rate constant, [M]c represents the monomer concentration at the 

catalytic active sites in the solid phase and [C*] is the concentration of active catalyst sites.  

In a heterogeneous reaction system such as considered in this work, it is possible that 

the monomer concentration in the bulk liquid phase [M]b may not be same as that in the solid 

phase [M]c. The non- linear rate dependence of polymerization rate on monomer 

concentration is often observed in other catalyzed polymerization processes such as ethylene 

slurry polymerization with metallocene catalysts [21].  

To analyze the non-linear rate dependence on monomer concentration, we propose 

that the monomer concentration in the solid phase (liquid-swollen polymer phase) is 

nonlinearly related to the monomer concentration in the bulk liquid phase. This can be 

illustrated using Langmuir isotherm monomer partition equation. In ethylene or propylene 

polymerization in liquid slurry phase with transition metal catalysts, monomer partition 

occurs between the bulk liquid phase and the solid polymer particle phase [22]. In this case, 

we employ a similar empirical correlation for the partition of styrene between the bulk liquid 

phase [M]b and the solid phase [M]c: 

 [M]c =
K1[M]b

1 + K2[M]b
         (2) 

 

According to Eq. (2), the monomer concentration in the solid phase increases linearly 

with the bulk phase concentration at low [M]b but it approaches the saturation value i.e., 

[M]sat=K1/K2 at high [M]b. If we adopt the form given by Eq. (2), the polymerization rate is 

expressed as: 

 Rp = kp[M]c[C
∗] =

kpK1[M]b

1 + K2[M]b
[C∗] ≡

kṕ[M]b

1 + K2[M]b
[C∗]         (3) 

where kṕ ≡ kpK1 represents the effective propagation rate constant. 

 

Another factor that can contribute to the decrease in the polymerization rate is catalyst 

deactivation. Although the site deactivation mechanisms and kinetics are not well understood 

for most of the transition metal catalyzed olefin polymerization processes, first-order 

deactivation kinetics has been generally well accepted [11]. If we assume the first-order 

deactivation kinetics, the polymerization rate equation can be expressed as follows: 

 Rp =
Mws kṕ[M]b

ρ
c
(1 + K2[M]b)

[C∗]oe
−kdt                  (g sPS/cat. h)         (4) 

where kd is deactivation rate constant. 

To calculate the polymer molecular weight distributions represented by degree of 

polymerization (Dp) and poly dispersity index (PDI), moment of live and dead polymer chain 

equations are needed, the mass balance equations for catalyst concentration ([C*]), monomer 

concentration ([M]c) and moments of the live (λL) and the dead polymer (λD) described the 

kinetic model of the polymerization process as shown in Table 3. Where [L] is the total live 

polymer concentration and [L] =λLo. 

 

Number average (Mn) and weight average molecular weights (Mw) of the polymer can 

be calculated from the moment’s live and the dead polymer (λL) and (λD) of the molecular 

weight distribution (MWD). The number average chain length is the ratio of the first moment 

to the zeros moment of MWD and the weight average chain length is the ratio of the second 

moment to the first moment of MWD. Mn and Mw of the polymer are obtained by multiplying 

theses chain lengths with the molecular weight of unit monomer using the following 

equations: 

 Mn = [
λL1 + λD1

λLo + λDo
]Mws ≈

λD1

λDo
 Mws         (5) 
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 Mw = [
λL2 + λD2

λL1 + λD1
]Mws  ≈

λD2

λD1
 Mws         (6) 

 

The degree of polymerization (DP) and poly dispersity index (PDI) is given by: 

 DP =
Mn
Mws

=
λD1

λDo
         (7) 

 PDI =
Mw
Mn

=
λD2λDo

λD1
2          (8) 

Where (Mws) represents the molecular weight of styrene. Notice that in Eqs. (5) and (6), the 

contributions of live polymers to overall molecular weight averages are ignored because the 

concentrations of live polymers are far smaller than the concentration of dead polymers. 

 

The propagation rate constant (kp) and K2 were estimated using non-linear least 

squares regression (MATLAB package, Ver. 6.5) by test Eq. (3). Then, the deactivation rate 

constant (kd) was predicted by test Eq. (4) using the same method. On other hand, the 

monomer chain transfer rate constant (ktM), and the β-hydrogen elimination rate constant (ktβ) 

were investigated form the instantaneous average degree of polymerization represented by 

the following equation [23]. 

 
Dp̅̅̅̅ =

Rp

Rt + Rd
=

kp[M]c [λLo]

ktM[M]c[λLo] + ktβ[λLo] + kd[λLo]
 

        (9) 

Where Rp is the chain propagation rate, Rt is the total chain transfer rates, and Rd is the site 

deactivation rate.[λLo] represents the total active site concentration i.e. [λLo]=[C*]+∑ [λLn]
∞
n=1 .  

Eq. (9) can be rearranged to: 

 1

Dp̅̅̅̅
=
ktM
kp
+
ktβ + kd

kp

1

[M]c 
=
ktḾ

kṕ
+
K2(ktβ + kd)

kṕ
+
ktβ + kd

kṕ

1

[M]b 
 

(10) 

WherektḾ ≡ K1ktM It should be pointed out that the molecular weight averages 

measured experimentally are cumulative molecular weight values at specific sampling times. 

Eq. (10) indicates that by plotting 1/ Dp against 1/ [M]bo, we can estimate the ktM, and ktβrate 

constant values. 

All kinetic rate parameters were estimated for experimental runs carried out at 

different temperatures, the Arrhenius law was applied to estimate activation energies and pre-

exponential factors. As a result, the kinetic parameters for styrene polymerization over silica 

supported metallocene catalyst in the batch reactor are shown in equations below: 

 
kṕ = 3.72 ∗ 10

2e(
−9416.4

RT
)                            (

L

mol. h
) 

(11) 

 
K2 = 1.4 ∗ 10

−3e(
−14730.7

RT
)                            (

L

mol
) 

      (12) 

 kd = 6.0 ∗ 10
−3e(

−14033.2

RT
)                              (h−1) (13) 

 
ktβ = 9.43 ∗ 10

−6e(
−1553.8

RT
)                             (h−1) 

(14) 

 
ktḾ = 12.5 ∗ 10

8e(
−3488.9

RT
)                            (

L

mol. h
) 

(15) 

)1−mol 1−K calWhere (R = 1.987  

 

4. GENETIC ALGORITHM OPTIMIZATION 
The objective of this part is to obtain the optimum conditions of the kinetic model 

(KM) variables using the genetic algorithm (GA) technique to achieve maximum 

polymerization reactor performance. The GA technique is used to optimize the KM. A 

http://en.wikipedia.org/wiki/Calorie
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different population size was employed, whose initial values were random numbers with a 

uniform distribution between the lower and upper limit of the parameters involved in the 

polymerization process. 

A roulette wheel selection technique was implemented [24]. In this strategy the parents are 

selected proportional to their fitness. The probability of an individual i to be chosen is: 

 Pi =
Fi

∑ Fj
n
j=1

 (16) 

Where Fi is fitness of individual i and n is the number of individuals in the population. 

Since roulette wheel is basically a stochastic process, there is a good chance that the 

individual with best fitness is selected both as mother and father. Thus, in order to diminish 

the loss of genetic diversity, we imposed that the two parents be different individuals, given a 

uniform random number b ∈[0, 1]. 

 C = b.M + (1 − b). F        (17) 

or C = b. F + (1 − b).M       (18) 

Where C is the real value chromosome of the child, and M and F are the chromosome of the 

parents.  

After a new individual has been created, a mutation was performed on it. Given the 

chosen solution encoding, we employed a uniform mutation, that randomly changes a gene to 

a uniform random value from i interval: xi =U (mini, maxi) .The interval we used was (0.03 - 

0.1), where xi represents the current value of the gene.  

 

The models mass balance equation give the following set of ordinary differential 

equations:  

 
dz

dt
= f(z, u, t)               z(to) = zo       (19) 

Where z(t) is the state variable vector defined, for polymerization process, by 

 z = [[C∗], [M]b, λLo, λL1, λL2, λDo, λD1, λD2]        (20) 

 

And u(t)is the control variable vector, corresponding to the monomer concentration, 

catalyst concentration and temperature as: 

 u(t) = [[M]b, [C
∗], T]       (21) 

An admissible control input u(t) should be formed in such a way that the performance 

indices, the objective function (J) defined by the following equation, is minimized: 

 Min J [u(t)] = wPDI. PDIf + wRp. (
1

1 + Rpnf
) + wDpn. (1 −

Dpnf
Dpnd

)
2

 (22) 

Subject to: 

 
dz

dt
= f(z, u, t)         and       umin ≤ u(t) ≤ umax       (23) 

Where w is weighting factors, PDIf, Rpnfand Dpnf are the actual values of PDI, Rp and 

Dp corresponding to the final reaction time tf, Dpnd are the desired values of degree of 

polymerization at t =tf,An important objective function of the polymerization system is the 

minimization of the final reaction time, which leads to higher polymerization rate. The other 

objective included in the same function is the minimization of the polydispersity index of the 

polymer product. This ensures good physical properties of the polymer manufactured. The 

constraint on Dpn leads to the production of polymer having desired properties, because 

several physical properties of polymers are related to their values of Dpn. 

Genetic algorithms are based on the mechanism of natural selection and genetics. 

They start with an initial setoff solutions, called population, each solution in the population 

being called a chromosome. The chromosomes are evolved through successive iterations, 
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called generations, by the genetic operators (selection, crossover and mutation) that mimic 

the principle of natural evolution. 

The optimization procedure includes the kinetics model (KM) is solved with a genetic 

algorithm. The fitness function of the GA is the scalar objective function (Eq. 22). Genetic 

algorithm provides, after an iterative calculus, the optimal values for decision variables ([M]b, 

[C], T, t), which are the inputs for the kinetics model and, also, the weights for the objective 

function. With these inputs, the kinetics model computes the responses Rp, Dp and PDI and 

the last one will by compared with desired values. If the two values are identical or the 

difference between them is very small, we can conclude that the task of the optimization, 

represented by minimum of the objective function, is achieved. The details of the algorithm 

are presented in Figure 2. 

A simple genetic algorithm with real value encoding for the chromosomes was used. 

The stop GA condition corresponds to the point where the maximum number of generations 

has been executed. Population size, number of generations, crossover probability, mutation 

probability and weighting factors are known as the control parameters of genetic algorithm. 

The values of these parameters must be specified before the execution of GA and they 

depend on the nature of the objective function. The GA parameters ranges are summarized in 

Table 4. 

 

5. RESULTS AND DISCUSSION 
5.1.  Kinetics model validation 

Model validation is important to ensure that the developed model is able to predict the 

polymerization reactor performance accurately. Kinetics model (KM) is validated by 

undergoing confirmation run experiments, using the set of experiments that conducted based 

on CCD application (Table 1).Based on the predicted kinetics parameters, predicted rate of 

polymerization and molecular weight distribution analysis as well as the predicted Dp and 

PDI, the KM able to predict the polymerization reactor performance for the rate of 

polymerization (Rp), degree of polymerization (Dp) and poly dispersity index (PDI).Tables 5 

summarize the experimental and predicted results for Rp, Dp and PDI under different 

polymerization condition. The validation results show that within the experimental rang; the 

kinetics model was capable in predicting Rp, Dp and PDI within less than 15% error, i.e. the 

total average absolute error % for Rp, Dp and PDI are 11.23% , 13.35 and 14.87 respectively. 

 

5.2. Genetic algorithm results  

A good process model is a necessary prerequisite for application of the optimal 

control strategy. Thus, the kinetics model was selected to predicate the optimum 

polymerization operational conditions and the catalyst properties using the genetic algorithm 

(GA) technique. To optimal control problem supposes the determination of the maximum 

polymerization rate (Rp) and the desired degree of polymerization (Dpnd), minimum 

polydispersity index (PDI) in a minimum polymerization reaction time (t). The GA as well as 

the kinetic model is implemented in Matlab M-Function program (Version 7.10.0.499), as 

specific functions were programmed for each phase of the genetic algorithm. 

Table 6 contains optimizations performed with different values for GA parameters in 

order to determine the best set for the actual polymerization process. We imposed the value 

for Dp =1000, thus we keep in mind the objective of the optimization: to obtain a maximum 

Rp and the imposed value for Dp equal the desire value degree of polymerization with 

minimum polydispersity index (PDI) in a minimum polymerization reaction time (t). The 

optimization results of Table 6, show that Run (5) given appropriate parameters of GA used 

to solve the proposed optimization problem are: Population size = 50, Generation Number = 

100, Crossover rate = 0.6and Mutation rate = 0.03, due to Dp calculated with optimal 
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decision values is close to desire value of polymerization degree (Dpnd) with high value of Rp 

and the minimum values of PDI and objective function J. 

Table 7 presents supplementary optimization results obtained for different values 

imposed to degree of polymerization (Dp). In most of the runs, Dp calculated with optimal 

decision values is close to desire value with high values of Rp and minimum value of PDI, 

which means that one of the optimization goals is reached. Run 1 in Table 7 does not 

represent an acceptable result. Tests with different values of GA parameters do not improve 

it; a better value for polymerization rate and PDI is obtained along with a worse value for Dp. 

This is the general rule of the multi-objective optimization with conflicting partial objectives, 

where a compromise between the possible solutions is realized. 

Model validation is important to be performed once optimization has been conducted. 

The goal is to check the results of the response experimentally, in order to ensure that the 

suggested optimum conditions are valid. The methods and experimental procedures 

conducted are similar to previous experiments presented in previous section for consistency. 

Three optimum solutions (Run 5 in Table 6, run 2 and 3 in Table 7) were selected for each 

response to validate it. 

Table 8 show the summary results of experimental data and predicted KM at different 

optimal values of control variables ([M]bo, [C]o, T, t), as well as the maximum rate of 

polymerization with desired value of Dp and minimum PDI. Based on the results in Table 8, 

the optimum results are shown in Run (2), i.e. initial monomer concentration ([M]bo = 2.91 

mol/L), initial catalyst concentration  ([C]o = 1.88*10-4 mol/L), polymerization temperature 

(T=67oC) and polymerization time (t=25 min), these results gives the maximum rate of 

polymerization (Rp= 338.2 g sPS/g cat.h) and the desired value of  polymerization degree 

(Dp=705.8) with minimum poly dispersity index (PDI=2.28). The validation results at these 

optimum values are valid and the average absolute error less than 5 % for all responses. 

 

6. CONCLUSIONS 
In this paper we developed and tested the modeling and optimization capacities of 

simple topologies and simple working strategies for kinetics model and genetic algorithms. 

For the syndiotactic polystyrene synthesis, these techniques provide a useful tool to easy find 

the reaction conditions to obtain a polymer with desired molecular weight and high 

polymerization rate. The genetic algorithm solves the optimization problem, while the 

kinetics model constitutes the model included in the optimization procedure, computes rate of 

polymerization and molecular weight that are used in the objective function of the 

optimization procedure, with the goal to maximize polymerization rate and to obtain a desired 

value for the molecular weight.  

 

Nomenclature 

[C]o Initial catalyst concentration mol/L 

[M]b
 

Monomer concentration in the bulk liquid phase mol/L 

[M]c
 

Monomer concentration at the catalytic active sites mol/L 

C*
 

Concentration of active catalyst sites mol/L 

D*
 

Deactivated catalyst site
 

- 

Dn
 

Total dead polymer concentration mol/L 

Dp Degree of polymerization - 

Dpd Desired values of polymerization degree - 

Dpf Actual values of degree of polymerization at final time - 

ka Activation rate constant 1/s 

kd Deactivation rate constant 1/s 

kp Propagation rate constant L/mol.s 

ktM Termination rate constants L/mol.s 
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ktβ β-hydrogen elimination rate constant 1/s 

Ln
 

Live polymer chains of length n
 

 

T Temperature  oC 

t Time min 

tf Final reaction time min 

ρ
c
 Catalyst density Kg/m3 

λLk Kth-moment of the live polymer mol/L 

λLo Total concentration of live polymer mol/L 
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Table (1): Reaction conditions and experimental data of styrene polymerization 

 

Run 

Variable Response 

[M]bo 

(mol/L) 

[C]o 

(mol/L) 

T 

(
o
C) 

t 

(min) 

Rp 

(gsPS/gcat.h) 

Dp 

(-) 

PDI 

(-) 

1 1.90 1.5 60 37.5 98.42 905.61 3.13 
2 4.00 1.5 60 37.5 151.47 1624.84 2.42 

3 1.90 2.1 60 37.5 137.89 698.4 3.40 

4 4.00 2.1 60 37.5 223.21 1322.42 2.64 
5 1.90 1.5 80 37.5 91.05 874.8 2.75 

6 4.00 1.5 80 37.5 141.37 1463.35 2.11 

7 1.90 2.1 80 37.5 133.94 585.67 2.82 

8 4.00 2.1 80 37.5 192.77 1175 2.23 
9 1.90 1.5 60 92.5 55.94 979.81 2.97 

10 4.00 1.5 60 92.5 85.50 1683.66 2.28 

11 1.90 2.1 60 92.5 78.35 654.84 3.27 
12 4.00 2.1 60 92.5 119.75 1300.99 2.46 

13 1.90 1.5 80 92.5 50.78 863.51 2.59 

14 4.00 1.5 80 92.5 83.27 1481.01 2.08 

15 1.90 2.1 80 92.5 73.67 559.64 3.01 
16 4.00 2.1 80 92.5 121.26 1109.03 2.39 

17 0.84 1.8 70 65.0 62.94 620.01 3.24 

18 5.06 1.8 70 65.0 159.42 1579.69 1.88 
19 2.95 1.2 70 65.0 67.91 1261.13 2.25 

20 2.95 2.4 70 65.0 176.42 933.83 2.72 

21 2.95 1.8 50 65.0 96.51 960.35 3.71 
22 2.95 1.8 90 65.0 98.86 747.25 3.30 

23 2.95 1.8 70 10.0 243.18 1236.77 2.94 

24 2.95 1.8 70 120 82.36 1268.8 3.10 

25 2.95 1.8 70 65.0 118.8 1013.16 2.41 
26 2.95 1.8 70 65.0 124.3 1129.56 2.90 

27 2.95 1.8 70 65.0 129.6 1135.64 3.02 

28 2.95 1.8 70 65.0 132.8 1151.92 3.03 
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29 2.95 1.8 70 65.0 133.1 1149.99 3.04 
30 2.95 1.8 70 65.0 132.9 1151.27 2.98 

 

Table (2): Kinetic mechanisms of styrene polymerization over metallocene catalyst 

Description Reaction 

Catalyst activation
 

Co +MAO 
ka
→ C∗ 

Propagation 
C∗ +Mc

kp
→ L1 

Ln +Mc
kp
→ Ln+1 

Chain transfer to monomer Ln +Mc
ktm
→  Dn + L1 

β-hydrogen elimination Ln
ktβ
→ Dn+ C∗ 

Catalyst deactivation
 

C∗
kd
→ D∗

,         
Ln

kd
→ D∗

 

 

 

Table (3): Rate and moment equations of styrene polymerization over metallocene catalyst 

d[C∗]

dt
= −kd[C

∗] − kp[C
∗][M]c + ktβλLo 

d[M]c
dt

= −kp[L][M]c − ktm[L][M] ≈ −kp[L][M]c 

dλLo

dt
= kp[C

∗][M]c − ktβλLo − kdλLo 

dλL1

dt
= kp[C

∗][M]c + kpλLo[M]c + ktm [M]c(λLo − λL1) − ktβλL1 − kdλL1 

dλL2

dt
= kp[C

∗][M]c + kp[M]c(2λ
L1
+ λLo) + ktm [M]c(λLo − λL2) − ktβλL2 − kdλL2 

dλDo

dt
= ktβλLo + kdλLo + ktmλLo[M]c 

dλD1

dt
= ktβλL1 + kdλL1 + ktmλL1[M]c 

dλD2

dt
= ktβλL2 + kdλL2 + ktmλL2[M]c 

 

 

 

Table (4): Genetic algorithm parameters used in models optimization 

GA Parameters Values 

Population size 30-300 individuals 

Number of generations 50-500 

Crossover probability 60-90 % 

Mutation probability 1-3 % 

Number of children / crossover 1 

Weight factor for PDI (wPDI) 1 

Weight factor for Rp (wRp) 1 

Weight factor for Dp (wDpn) 50 
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Table (5): Summary of experimental and predicted KM for polymerization rate data 
 

Run 

Rp (gsPS/gcat.h)  Dp (-)  PDI (-) 

Exp. 

Data 

 

KM 

Predicted 

Data 

Absolute 

Error(%) 

Exp. 

Data 

 

KM 

Predicted 

Data 

Absolute 

Error(%) 

Exp. 

Data 

 

KM 

Predicted 

Data 

Absolute 

Error(%) 

1 98.42 105.54 7.23 905.60 995.81 9.96 3.13 3.46 10.4 

2 151.47 159.06 5.01 1624.8 1760.1 8.33 2.42 2.60 7.50 

3 137.89 154.93 12.3 698.40 862.59 23.5 3.74 4.49 20.6 

4 223.2 238.36 6.79 1322.4 1417.9 7.22 2.64 2.88 8.99 

5 91.05 116.85 28.3 874.80 1038.3 18.7 2.98 3.58 20.3 

6 141.37 155.04 9.67 1463.3 1670.2 14.1 2.11 2.28 7.97 

7 133.94 168.03 25.4 585.67 756.57 29.2 2.93 3.74 27.5 

8 192.77 218.10 13.1 1175.0 1440.2 22.6 2.23 2.81 25.6 

9 55.94 65.89 17.7 979.81 1040.8 6.23 2.97 3.32 11.9 

10 85.50 90.72 6.11 1683.6 1831.3 8.77 2.28 2.47 8.40 

11 78.35 85.36 8.95 654.84 768.65 17.4 3.27 3.47 6.05 
12 119.75 131.43 9.75 1300.9 1374.1 5.62 2.77 3.11 12.2 

13 50.78 58.86 15.9 863.51 1034.7 19.8 2.80 3.42 21.9 

14 83.27 88.46 6.23 1481.0 1708.2 15.3 2.08 2.19 5.49 

15 73.67 83.07 12.7 559.64 614.88 9.87 3.06 3.89 27.2 

16 121.26 151.61 25.0 1109.0 1410.0 27.2 2.39 2.78 16.2 

17 62.94 72.01 14.4 620.01 722.44 16.5 3.24 3.83 18.3 

18 159.42 172.91 8.46 1579.6 1699.2 7.57 1.88 2.02 7.35 

19 67.91 81.36 19.8 1261.13 1599.2 26.8 2.25 2.59 15.3 

20 176.42 202.35 14.0 933.83 1053.3 12.8 2.72 3.26 19.8 

21 96.51 106.85 10.7 960.35 1065.2 10.9 3.71 4.41 18.7 

22 98.86 122.45 23.8 747.25 1014.2 35.7 3.30 4.53 37.1 

23 243.18 261.49 7.53 1236.77 1355.9 9.64 2.94 3.46 17.7 
24 82.36 85.04 3.26 1268.8 1413.1 11.3 3.10 3.31 6.77 

25 118.8 133.25 12.1 1013.16 1106.8 9.25 2.41 2.65 9.95 

26 124.3 133.25 7.2 1129.56 1106.8 2.01 2.44 2.65 8.69 

27 129.6 133.25 2.82 1135.64 1106.8 2.53 2.36 2.65 12.1 

28 130.7 133.25 1.94 1151.92 1106.8 3.91 2.36 2.65 12.5 

29 130.5 133.25 2.11 1149.99 1106.8 3.75 2.35 2.65 12.7 

30 130.31 133.25 2.26 1151.27 1106.8 3.86 2.39 2.65 10.9 

         Average Absolute 

Error 

11.23 Average Absolute  

Error 

13.35 Average Absolute 

Error 

14.87 

 

Table (6): Optimization with different values for the GA parameters 

Run 
GA 

parameters 
Control variable 

Responses 

obtained by 

KM 

Optimum 

response by 

GA 

1 Pop. = 30 

Gen. No. = 100 

Cross. rate = 0.9 

Mut. rate = 0.03 

[M]bo =2.71 mol/L 

[C]o = 1.97 mol/L 

T = 62oC 

t = 39 min 
 

Rp = 311.8 

Dp =1018.6 

PDI = 3.34 

 

J = 0.0205 

Dpnd = 1000 

 

2 Pop. = 50 

Gen. No. = 100 

Cross. rate = 0.9 
Mut. rate = 0.03 

[M]bo =2.33 mol/L 

[C]o = 2.48 mol/L 

T = 78oC 
t = 28 min 

 

Rp = 297.2 

Dp =994.5 

PDI = 2.38 

 

J = 0.0049 

Dpnd = 1000 

 

3 Pop. = 300 

Gen. No. = 100 

[M]bo =2.96 mol/L 

[C]o = 1.57 mol/L 

Rp = 288.6 J = 0.0074 

Dpnd = 1000 
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Cross. rate = 0.9 
Mut. rate = 0.03 

T = 71oC 
t = 27 min 

 

Dp =1008.9 

PDI = 2.81 

 

 

4 Pop. = 50 

Gen. No. = 200 

Cross. rate = 0.9 
Mut. rate = 0.03 

[M]bo =3.11 mol/L 

[C]o = 2.04 mol/L 

T = 75oC 
t = 34 min 

 

Rp = 321.2 

Dp =989.4 

PDI = 2.49 

 

J = 0.0087 

Dpnd = 1000 

 

5 Pop. = 50 

Gen. No. = 100 
Cross. rate = 0.6 

Mut. rate = 0.03 

[M]bo =2.62 mol/L 

[C]o = 1.51 mol/L 
T = 64oC 

t = 23 min 

 

Rp = 334.7 

Dp =1003.9 

PDI = 2.26 

 

J = 0.0037 

Dpnd = 1000 
 

6 Pop. = 50 
Gen. No. = 100 

Cross. rate = 0.9 

Mut. rate = 0.1 

[M]bo =2.39 mol/L 
[C]o = 2.56 mol/L 

T = 81oC 

t = 36 min 

Rp = 257.5 

Dp =1012.3 

PDI = 3.43 

 

J = 0.0114 
Dpnd = 1000 

 

 

Table (7): Optimization with different values for Rp, Dp, PDI 

No. 
GA 

parameters 
Control variable 

Responses 

obtained by 

KM 

Optimum 

response by 

GA 

1 Pop. = 50 

Gen. No. = 100 

Cross. rate = 0.6 
Mut. rate = 0.03 

[M]bo =2.42 mol/L 

[C]o = 1.67 mol/L 

T = 56oC 
t = 29min 

 

Rp = 257 

Dp =523 

PDI = 2.93 

 

J =  0.1097 

Dpnd = 500 

 

2 Pop. = 50 

Gen. No. = 100 
Cross. rate = 0.6 

Mut. rate = 0.03 

[M]bo =2.91 mol/L 

[C]o = 1.88 mol/L 
T = 67oC 

t = 25 min 

 

Rp = 338.2 

Dp =705.8 

PDI = 2.23 

 

J = 0.0065 

Dpnd = 700 
 

3 Pop. = 50 
Gen. No. = 100 

Cross. rate = 0.6 

Mut. rate = 0.03 

[M]bo =2.73 mol/L 
[C]o = 2.19 mol/L 

T = 71oC 

t = 31 min 
 

Rp = 323.5 

Dp =1502 

PDI = 2.28 

 

J =  0.0032 
Dpnd = 1500 

 

4 Pop. = 50 

Gen. No. = 100 

Cross. rate = 0.6 

Mut. rate = 0.03 

[M]bo =2.46 mol/L 

[C]o = 1.91 mol/L 

T = 69oC 

t = 23 min 

Rp = 296.1 

Dp =2006 

PDI = 2.64 

 

J = 0.0038 

Dpnd = 2000 
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Table: (8): Summary of experimental data and predicted KM for Rp, Dp and PDI at different 

optimum values of control variables. 

 

Run 
Optimum variables Rate of polymerization (Rp) 

Mo 

(mol/L) 

Co *10
4
 

(mol/L) 

T 

(
o
C) 

t 

(min) 

Experimental 

Data 

KM 

Predicted Data 

Absolute Error 

 (%) 

1 2.62 1.51 64 23 320.4 334.7 4.46 

2 2.91 1.88 67 25 324.3 338.2 4.29 

3 2.73 2.19 71 31 307.7 323.5 5.13 

 

Run 
Optimum variables Degree of polymerization (Dp) 

Mo 

(mol/L) 

Co *10
4
 

(mol/L) 

T 

(
o
C) 

t 

(min) 

Experimental 

Data 

KM 

Predicted Data 

Absolute Error  

(%) 

1 2.62 1.51 64 23 959.6 1003.9 4.62 

2 2.91 1.88 67 25 681.4 705.8 3.58 

3 2.73 2.19 71 31 1431.2 1502 4.95 

 

Run 
Optimum variables Poly dispersity index (PDI) 

Mo 

(mol/L) 

Co *10
4
 

(mol/L) 

T 

(
o
C) 

t 

(min) 

Experimental 

Data 

KM 

Predicted Data 

Absolute Error  

(%) 

1 2.62 1.51 64 23 2.37 2.26 4.64 

2 2.91 1.88 67 25 2.33 2.23 4.29 
3 2.73 2.19 71 31 2.41 2.28 5.39 

 

 

 

 

 

 

 
 

Fig. (1): Schematic diagram for Preparation of silica supported catalyst 
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Fig. )2(: Flowchart for computer program of genetic algorithm 

No 

Yes 

Select a pair of chromosomes for mating 

With the crossover probability, exchange parts of the 

two selected chromosomes and create two offspring 

Place the resulting chromosomes in the new population  

Is the size of the new 

population equal to N? 

Replace the current chromosome population 

with the new population  

Start 

 

control variable vector rangeRead  

umin ≤ u(t) ≤ umax = [[M]b, [C
∗], T, t] 

Generate a population of chromosomes of size N vectors 

 N, u3…….u2, u1u 

Using the kinetics model to predicate Rp, Dp and PDI 

of each chromosome  

  

Calculate the fitness of each chromosome by Equation (22) 

Is the termination 

criterion satisfied? 

Stop 

 

With the mutation probability, randomly change 

the gene values in the two offspring 

chromosomes 

Yes 

No 
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لبلمرة الستايرين التناسقية باستخدام تقنية الخوارزمية  الأهدافمتعددة  الأمثل اختيار

 الجينية
 

 الخلاصة:
. حيث تم مثلى لبلمرة الستايرين التناسقيةلتحديد الضروف ال الأهدافمتعدد  الأفضلتم استخدام تقنية اختيار 

اختبار نموذج حركية التفاعل وتقنية الخوارزمية الجينية لنمذجة واختيار الافضل لعملية بلمرة الستايرين. للتحقق من هذه 
نتائج أن نموذج الالنموذج، تم إجراء بلمرة الستايرين التناسقية المدعمة بالعامل المساعد المحمل على السيلكا. أظهرت 

 الظروف أفضل إيجاد، تم اعتماده في وبالتالي %10اقل من  أل أداء لمفاعل البلمرة وبنسبة خطحركية التفاعل يتوقع أفض
التشغيلية باستخدام تقنية الخوارزمية الجينية, حيث كانت أفضل النتائج تعطي الحد الأقصى لمعدل البلمرة و القيمة 

 . %2وبنسبة خطاء اقل من المطلوبة من درجة البلمرة مع الحد الأدنى من مؤشر التشتت المتعدد 
 
 

 


