blue laser diodes demand high quality ZnSe single crystal as a substrate for homoepitaxial growth. The thermal conductivity of Zn Se by molecular dynamics simulation was studied by (2).

Avdonin et al (3,4) have studied the electrical conductivity and luminescence in Zn Se crystal doped with transition elements and gold, respectively.

Jianyong Duyang and Yongfang Li (5) have been reported the electrical conductivity of thin films of polypyrrole with the variation in voltage at room temperature. Also it was found electrical conductivity of Zn50 Se50 varies with the applied voltage at fixed temperature ranging from room temperature to 180 ° C (6).

In addition to the determination of the carrier concentration by using Hall effect method, an effort had been done (7) to determine the carrier concentration of doped ZnSe from infrared measurement.

In this work, we have investigated the dc electrical conductivity of ZnxSe1-x polycrystalline thin films. Also our effort had been done to know the type of carriers, their concentration, and the dependence of these parameters on x-composition.

2- DIRECT CURRENT (DC) ELECTRICAL CONDUCTIVITY (8,9)

The essential features of the Davis-Mott model for the band structure of the amorphous semiconductors, are the existence of the localized states at the extremities of the V.B and C.B near the middle of the gap. This leads to four basically different mechanisms of conduction which are expected to occur in appropriate range of temperature.

Where V.B is the valance band and C.B is the conduction band.

2.1- Extended State Conduction

This conduction mechanism occurs at a high temperature range in which the carriers are excited into extended states above Ec for electrons and below Ev for holes.

The dc conductivity (σ) can be expressed in the form (8).
\[\sigma_{ext} = \sigma_0 \exp \left[-\frac{E_a}{K_B T} \right] \quad (1) \]

When \(\sigma_0 \) is known as minimum metallic conductivity, \(E_C - E_F = E_a \) is called the activation energy of the semiconductor, \(K_B \) Boltzamann constant and \(T \) is the temperature measured in Kelvin, \(E_C \) it is known as a conduction energy and \(E_F \) as Fermi energy.

2.2- Conduction in Band Tails

This type of conduction takes place by thermal hopping through the localized states. The conductivity in this region is given by\(^{(8)}\):

\[\sigma_{LOC} = \sigma_{01} \exp \left[-\frac{E_A - E_F + W_1}{K_B T} \right] \quad (2) \]

\(E_A \) and \(E_F \) correspond to the band edges of the crystalline material. Those marked \(E_B \), and \(E_A \) correspond to the sharp division between localized and extended states near what would be the top of the valance band and bottom of the conduction band respectively, while \(W_1 \) is the hopping energy.

2.3- Conduction in localized states and Fermi Energy

At low temperature the conduction happens at the localized states and Fermi level by tunneling process with the assistance of photon and the conductivity in this case is given by:

\[\sigma_{LOC} = \sigma_{02} \exp \left[-\frac{W_2}{K_B T} \right] \quad (3) \]

When \(W_2 \) has the same physical meaning of \(W_1 \) and \(\sigma_{02} < \sigma_{01} \)

2.4- Conduction at very low temperature

The hopping conductivity occurs at very low temperature and obeys the low.

\[\sigma \propto \exp \left[-\frac{B}{T^{1/4}} \right] \quad (4) \]

Where \(B \) is constant.
3- THE HALL EFFECT

The Hall effect is one of the most useful tools for studying the transport phenomenon in the crystalline semiconductors. It is a widely used method to distinguish between the types of the carriers, the concentration, and determining the mobility in the semiconductors.

4- EXPERIMENTAL

4.1- Preparation of ZnₓSe₁₋ₓ, Alloys

The bulk samples of ZnₓSe₁₋ₓ, where 0 ≤ X ≤ 0.3 have been prepared by direct mixing of highly pure Zn and Se (purity 99.99%) according to the atomic ratio of their constituent elements. The mixture for different values of x kept in evacuated quartz ampoules at 10⁻² torr. The ampoules were placed in a furnace at a temperature about 800°C to melt the mixture for twelve hours. Then the ampoules were left at the furnace to cool gradually until their temperatures reach the room temperature. Then ampoules were broken and the prepared compound of ZnₓSe₁₋ₓ have been taken out and powdered to fine size particles. The powder of the compound was used as a source for evaporation to prepare the films.

4.2- Preparation of ZnxSe1-x Thin Films

According to the applications in electronics and microelectronics and for some experimental work, it is necessary to form films in some special shape or form.. A spiral form boat is made of tungsten (W) is used for Al deposition and graphite boat is used to deposit ZnₓSe₁₋ₓ.

Thin films of ZnₓSe₁₋ₓ, where 0 ≤ X ≤ 0.3 of thickness 4800 Å were prepared by using Edwards E(312) unit. The films are deposited on a glass substrate at room temperature while the pressure is kept at 10⁻⁶ torr during evaporation.

5- RESULTS AND DISCUSSION

5.1- DC Conductivity

The direct current (dc) conductivity (σ) of the compound ZnₓSe₁₋ₓ for 0 ≤ X ≤ 0.3 thin
ELECTRICAL PROPERTIES OF ZNX SE1-X THIN FILMS PREPARED BY THERMAL EVAPORATION METHOD

films have been determined. The activation energy (Ea) of the films was found using equation (1).

The plot of \(\ln \sigma \) against \(\frac{1000}{T} \) for the as deposited films at R.T was presented in Figures (1). These figures showed in general two mechanisms from which the activation energies \(E_{a1} \) and \(E_{a2} \) have been calculated. The obtained values of \(E_{a1} \), \(E_{a2} \) and the dc conductivity (\(\sigma \)) for the as deposited thin films were tabulated in table (1). The data showed that \(E_{a1} \) increases as the Zn content increases, these values changed from 0.6 eV for pure Se \((x=0)\) to 1.01 eV for \(Zn_{0.3}Se_{0.7} \) as in Fig-2.

Table(1):- Electrical properties of as deposited \(Zn_xSe_{1-x} \) thin films

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(atRT)(\Omega cm)^{-1})</td>
<td>(\cdot)</td>
</tr>
<tr>
<td>(E_{a1}(eV))</td>
<td>(\cdot \cdot)</td>
</tr>
<tr>
<td>(E_{a2}(eV))</td>
<td>(\cdot \cdot)</td>
</tr>
<tr>
<td>type</td>
<td>P</td>
</tr>
<tr>
<td>(\left(\frac{cm^3}{C} \right)) RH</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>Concentration cm(^{-3})</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>(u) (cm(^2)/v.s)</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
</tbody>
</table>

The reason for increasing \(E_{a1} \) with Zn content is belonged to the density of states of Se at the energy gap is greater than that of Zn, so that the conduction of the carriers takes place through the deep level of the energy gap, and this increases the activation energy \(E_{a1} \).

Also it is found that \(E_{a1} > E_{a2} \) because \(E_{a1} \) represents the energy of holes excited into extended state below \(E_V \) from \(E_F \), while \(E_{a2} \) is the hopping energy of the carriers through the localized state\(^{(10,11)} \).

The conductivity (\(\sigma \)) of the \(Zn_xSe_{1-x} \) thin films decreases with the increasing Zn content as in Fig.3, and this belongs to the variation of the energy gaps of Zinc and selenium.
5.2- Hall Effect Measurements

The Hall measurements of the as deposited Zn$_x$Se$_{1-x}$ thin films at R.T have been taken. Figures (4), represent the variation of Hall voltage (V_H) against the current (I) under variable applied electric field and a constant magnetic field. It appears from the figures, the samples were p-type for the range of composition $0 \leq X \leq 0.3$.

It can be determine the Hall coefficient (R_H), Hall mobility μ_H and the carrier concentration from the following equations:\(^{(12)}\):

$$R_H = \frac{V_H \times l}{I \times B_z} \quad \text{(5)}$$

$$\mu_H = |RH|/\sigma \quad \text{(6)}$$

It was found from Fig.(5) that the Hall mobility depends on the Zn content (x), it was changed from the value 398 cm2/v.s for Zn$_{0.1}$Se$_{0.9}$ to 96 cm2/v.s Zn$_{0.3}$Se$_{0.7}$. The change in the mobility of the films may be due to the variation the structure of the films with X composition, also it may be due to the difference in the mobility of pure Zinc and pure selenium.

6- CONCLUSION

1. It can be concluded from the investigation of (dc) conductivity (σ) of the Zn$_x$Se$_{1-x}$ thin films, that (σ) increases with increasing temperature, because of the increasing of carriers mobility with temperature.
2. There are two activation energies for the Zn$_x$Se$_{1-x}$ thin films. E_{a1} represents the conduction due to the extended states in the forbidden energy gap, while E_{a2} is the activation energy of the carriers excited into localized states at the band edge.
3. It could found from this investigation that E_{a1} increases with increasing Zn content (x). The increasing in the E_{a1} causes a decreasing in the conductivity.
4. It obtained from Hall effect experiment, the concentration of the carriers increases with increasing the ratio of Zn (x).
5. The mobility of carriers decreases with increasing Zn content (x).
7- REFERENCES

Fig. (1): The variation of $\ln \sigma$ vs. $1000/T$ of the as deposited $\text{Zn}_x\text{Se}_{1-x}$ thin films
Fig.(2): The effect of Zn content (x) on the activation energy of the as deposited $\text{Zn}_x\text{Se}_{1-x}$ thin films.

Fig.(3): The effect of Zn content (x) on the (dc) electrical conductivity of the as deposited $\text{Zn}_x\text{Se}_{1-x}$ thin films.
ELECTRICAL PROPERTIES OF ZNX SE1-X THIN FILMS PREPARED BY THERMAL EVAPORATION METHOD

Fig.(4):- The variation of Hall voltage vs. current for Zn$_x$Se$_{1-x}$ thin films

Fig.(5):- The dependence of carriers mobility on Zn content (x) of the as deposited Zn$_x$Se$_{1-x}$ thin films
الخواص الكهربائية للأغشية الرقيقة للمركب $\text{Zn}_x\text{Se}_{1-x}$ المحضر بطريقة التبخير الحراري

د. حبيب شمال جاسم

مدرس

كلية الهندسة، جامعة ديالى

الخلاصة

حضرت الأغشية الرقيقة لمادة شبه الموصل $\text{Zn}_x\text{Se}_{1-x}$ على شريحة زجاجية وسمك (480 nm) ودرجة حرارة التبخير الحراري. درست الخواص الكهربائية لهذه الأغشية كالتوصيلية المستمرة ظاهرة هول، والتي تمثل نوعين من ميكانيكية التوصيلية المستمرة ضمن المدى الحراري ($k = 423$-293 ك.ص)، أظهرت طاقة خروج منصفية (E_a1, E_a2) متواجدة على التوالى عندما تكون $x = 0.2$، وتمثل الطاقة منصفية الرنينية E_a1, E_a2 على التوالى عندما تكون $x = 0.2$. أظهرت دراسة بان قيم الطاقة هذه بقيمة x بَت تصبح $1.01\text{eV}, 0.1\text{eV}$ مساوية إلى E_a1, E_a2 عند $x=0.2$. هذه القيمة بقيمة x تكون $3.2 \times 10^{-7} (\Omega \cdot \text{cm})$ خلال $1.59 \times 10^{-7} (\Omega \cdot \text{cm})$ عند $x = 0.2$. دراسة ظاهرة هول اثبتت بأن الحاملات من النوع الموجب (p) وتركيزها هو $1.6 \times 10^{9} \text{cm}^{-3}$ عند $x = 0.3$. x=0.3 و يرتفع إلى $5.19 \times 10^{7} (\Omega \cdot \text{cm})$ عند $x = 0.3$. x=0.3. وكذلك فإن التحريرية لها علاقة بتركيز الزنك x أيضاً.