
13 

 

                                                                                       ISSN  1999-8716 

                                                                                                                                           

   

Vol. 02, No. 01, pp. 13-34, June 2009 

 

Emulation of the Microprocessor Intel 80386 

 
Sameera A'amer Abdul-Kader 

 

Department of Computer, College of Education, University of Diyala  

 (Received:19/8/2008; Accepted:24/1/2009) 

 

ABSTRACT - Microprocessor simulation is one of the recent applications of computer 

design. It is used for emulating the microprocessors for some purposes such as; learning 

microprocessor structure and assembly language in laboratories in universities. In this 

research simulation for the microprocessor Intel 80386 was suggested, designed and 

implemented. Implementation was verified for some data transfer instructions like MOV 

instructions in deferent addressing modes. The designed simulation program was 

implemented using Visual Basic programming. Examples were tested successfully for some 

MOV instructions.  

 

1. INTRODUCTION 

In microcomputers and microprocessors instruction the student’s job is to write 

programs for controlling equipment connected to a microcomputer. Instead of real devices we 

propose control devices simulated on the computer screen. Of course, it is important that the 

simulated environment is invisible for the students. Control programs, written by students, 

should work in the same way in the simulated environment as in a real environment. 

Because of the time, expense, and complexity of constructing hardware prototypes, the 

computer architecture research community relies heavily on simulation to evaluate new ideas. 

As a result of the increasing complexity in modern computer systems, and with the 

corresponding difficulties of building and maintaining software tools that reflect that 

complexity, simulation infrastructure is now widely shared among both academic and 

industry researchers. 

          When microcomputers were invented, the most common microprocessor 

communication with the outside world has been through input/output ports that are located in 

Diyala Journal 
of Engineering 

Sciences 



Emulation of the Microprocessor Intel 80386 

 

14 

 

the I/O or memory space. This facilitates constructing more advanced and more complicated 

microcomputer peripherals such as parallel or serial ports, timers or counters, DMA 

controllers and so on. Generally, internal ports of these peripherals are designed for the 

following functions: 

• DATA ports  

• CONTROL ports  

• STATUS ports.  

          The communication through input/output ports is also applied for devices such as 

printers, plotters, floppy or hard discs, etc. More complicated devices, such as display graphic 

controllers, contain ports in addition to memories. Complex external devices have 

complicated electric schemes. From the programmer’s point of view electric details of 

controlled devices are not essential. For proper control it is enough to know what information 

to send to the CONTROL/DATA ports. The situation is the same even if external devices are 

causing interrupts. 

           In the teaching of microprocessor programming the above idea is very common: 

students control external real devices, connected to the microcomputers, by writing programs 

in a specified language (assembler, C, Basic). These programs are sending sequences of 

controls through input/output ports. Instead of real devices we consider the situation of 

controlling simulated devices displayed on the computer screen.(1) 

           In this research a simulation program for the microprocessor 80386 was suggested, 

designed and implemented. The simulation program was written in Visual Basic software. 

MOV instructions were implemented successfully. 

 

2. CASE STUDIES 

           The last studies reflect the practical expertise that implemented of international in 

subject of this research. So according to importance of learning system and simulation 

programs, the researchers dealt with designing programs. This research deals with simulation 

for the microprocessor 80386, so there were studies in this subject as will reviewed bellow: 

• Jacek Majewiski: In this paper control programs, written by students worked in the 

same way in the simulated environment as in a real environment. The paper considers as 

an example the preparation of a control program for the model of a plotter. The control 

plotter programs are written in C and 8086 assembler and compiled by real compilers: 

Borland C and TASM.(1) 



Emulation of the Microprocessor Intel 80386 

 

15 

 

• Nancy A. Day: This research presents a technique for doing symbolic simulation of microprocessor 

models in the functional programming language Haskell. Polymorphism and the type class system, a 

unique feature of Haskell are used, to write models that work over both concrete and symbolic data. It 

offers this approach as an alternative to using uninterpreted constants. When the full generality of 

rewriting is not needed, the performance of symbolic simulation by evaluation is much faster than 

previously reported symbolic.
(2) 

• Zaatar, W.   Nasr, G.E.: In this paper a general method for defining a microprocessor 

emulator, applicable in any high level programming language, is presented. A 

complete set of communication rules is defined to describe all calls between different 

modules of the emulation software. The construction methodology used allows easy 

modifications in the emulator structure to fit different processors. Although most 

analysis is written in pseudo code, an actual implementation is done in Visual BASIC. 

In addition, the proposed emulator is implemented and compared to standard 

emulators while running a typical execution sequence.(3)  

• Werstein, P. Cooper, C.:   The paper describes the use of Java to develop a software 

based emulator for a microprocessor. This emulator is used in a second year computer 

architecture course to teach the basics of assembly language programming. The 

implementation of the emulator in Java is described in detail.(4) 

 

3. ADVANCED MICROPROCESSORS 

           The 80386 microprocessor is a full 32-bit version of the earlier 8086 / 80286   16-bit 

microprocessors and represents a major advancement in the architecture a switch from a 16-

bit architecture to a 32-bit Architecture. Along with this larger word size are many 

improvements and additional features, the 80386 microprocessor features multitasking 

memory management, Virtual memory (with or without paging) software protection and a 

large memory system. All software written for the early 8086/8088 and the 80286 are 

upward-compatible to the 80386 microprocessor. The amount of memory addressable by the 

80386 is increased from the 1M bytes found in the 8086/8088 and the 16M bytes found in the 

80286, to 4G bytes in the 80386. The 80386 can switch between protected mode and real 

mode without resetting the   microprocessor. Switching from protected mode to real mode 

was a problem on the 80286 microprocessor because it required a hardware reset.  

       The 80486 microprocessor is an enhanced version of the 80386 microprocessor that 

executes many of its instructions in one clocking period. (5) 

 



Emulation of the Microprocessor Intel 80386 

 

16 

 

4. THE 80386 MICROPROCESSOR STRUCTURE 

        Figure (1) illustrates the pin-out of the 80386DX microprocessor. The 80386DX is 

packaged in a 132-pin PGA (pin grid array). Two versions of the 80386 are commonly 

available: the 80386DX, the other is the 80386SX, which is a reduced bus version of the 

80386. Anew version of the 80386 Ex-incorporates the AT bus system, dynamic RAM 

controller, programmable chip selection logic, 26 address pin, 16 data pins, and 24 I/0 pins .  

         The 80386 DX addresses 4G bytes of memory through its 32-bit data 32-bit address. 

The 80386 SK. more like the 80286, addresses 16M bytes of memory with its 24-bit address 

bus via its 16-bit data bus.  

         The 80386 SK was developed after the 80386DX for applications that didn't require the 

full 32-bit bus version. The 80386SK is found in many personal computers that use the same 

basic mother board design as the 80286. At the time that the 80386SX was popular, most 

applications including windows required fewer than 16M bytes of memory, so the 80386SK is 

a popular and a less costly version of the 80386 microprocessor. Even though the 80486 has 

become a less expensive upgrade path for newer system, the 80386 still can be used for many 

applications. For example, the 80386 EX does not appear in computer systems, but it is 

becoming very popular in embedded applications.(5)    

 

Fig. (1): the pin-outs of the 80386DX and 80386SX microprocessors. 

 

4.1. The Memory System 

           The physical memory system of the 80386DX is 4G bytes in size and is addressed as 

such. If virtual addressing is used 64Tbytes are mapped in to the 4G bytes of physical space 

by the memory management unit and descriptors. (Note that virtual addressing allows a 



Emulation of the Microprocessor Intel 80386 

 

17 

 

program to be larger than 4G bytes if a method of swapping with a very larger hard disk drive 

exists.) Figure (2) shows the organization of the 80386DX physical memory system.  

          The memory is divided into four 8-bit wide memory banks each containing up to 

1Gbytes of memory. This 32-bit wide memory organization allows bytes, words or double 

words of memory data to be accessed directly.  

           The 80386DX transfers up to a32-bit wide number in a single memory cycle, whereas 

the early 8088 requires four cycles to accomplish the same transfer, and the 80286 and 

80386SX require two cycles. Today, the data width is important, especially with single-

precision floating-point numbers that are 32bits wide, High-level software normally uses 

floating-point numbers for data storage, so 32-bit memory locations speed the execution of 

high-level software when it is written to take advantage of this wider memory. (5)                

 

4.2. The Input /Output System 

          The 80386 input / output system is the same as that found in the any Intel 8086 family 

microprocessors–based systems. There are 64K different bytes of I/O space available if 

isolated I/O is implemented. With isolated I/O the IN and OUT instruction are used to transfer 

I/O data between the microprocessor and I/O devices. 

 

Fig. (2): the memory system for the 80386 microprocessor   

           The I/O port address appears on address bus connections A15-A2. With BE3-BE0 used 

to select a byte, word or double word of I/O data. If memory-mapped I/O is implemented, 

then the number of I/O locations can be any amount up to 4G bytes. With memory-mapped 

I/O any instruction that transfers data between the microprocessor and memory system can be 

used for I/O transfers because the I/O device is treated as a memory device. Almost all 80386 



Emulation of the Microprocessor Intel 80386 

 

18 

 

system use isolated I/O because of the I/O protection scheme provided by the 80386 in 

protected mode operation.  

           Figure (3) shows the I/O map for the 80386 microprocessor. Unlike the I/O map of 

earlier Intel microprocessors which were 16-bits wide. The 80386 uses a full 32-bit wide I/O 

system divided into four banks. This is identical to the memory system, which is also divided 

into four banks. Most I/O transfers are 8-bits wide because we often use ASCII code (a 7-bit 

code) for transferring alphanumeric data between the microprocessor and printers and 

keyboards. This may change if Unicode a 16-bit alphanumeric code becomes common and 

replaces ASCII code.  

 

Fig. (3): The isolated I/O map for the 80386 microprocessor. 

           The only new feature that was added to the 80386 with respect to I/O is the I/O 

privilege information added to the tail end of the Tss when the 80386 is operated in protected 

mode.(5) 

 

4.3. Special 80386 Registers 

          A new series of registers not found in earlier Intel microprocessors appears in the 

80386 as control debug and test registers. Control registers CR0-CR3 control various features. 

DR0-DR7 facilitates debugging and registers TR6 and TR7 are used to test paging and 

caching.  

 

 

4.3.1. Control Registers 

           In addition to the EFLAGS and EIP earlier there are other control registers found in 

the 80386. Control register 0 (CR0 is identical to the MSW (machine status word) found in 

the 80286 microprocessor except that it is 32-bits wide instead of 16-bits wide, additional 

control registers are CR1, CR2, and CR3. 



Emulation of the Microprocessor Intel 80386 

 

19 

 

            Figure (4) illustrates the control register structure of the 80386. Control register CR1 

is not used in the 80386 but is reserved for future products. Control register CR2 hold the 

linear page address of the last page accessed before a page fault interrupt. Finally Control 

register CR3 holds the base address of the page directory. The rightmost 12-bits of the 32-bit 

page table address contain zeros and combine with the remainder of the register to locate the 

start of the 4k-long page table. Register CR0 contains a number of special control bits in 

80386. 

PG selects page table translation of linear addresses in to physical addresses when PG = 1 

page table translation allows any linear address to be assigned any physical memory location.  

ET selects the 80387 coprocessor when ET=0 or the 80387 coprocessor when ET=1, this bit 

was installed because there was no 80387 available when the 80386 first appeared. In most 

system ET is set to indicate that an 80387 is present in the system. 

TS Indicates that the 80386 has switched tasks (in protected mode changing the contents of 

TR places a 1 in to TS). If TS=1, a numeric coprocessor instruction causes a type 7 

(coprocessor not available) interrupt.  

 

Fig. (4): The control register structure of the 80386 microprocessors 

EM Is set to cause a type 7 interrupt for each ESC instruction (Escape instructions are used to 

encode instructions for the 80387 coprocessor) we often use this interrupt to emulate with 

software.  

MP Is set to indicate that the arithmetic coprocessor is present in the system.  

PE Is set to select the protected mode of operation for the 80386. It may also be cleared to re-

enter the real mode. This is bit can only be set in the 80286. (5) 



Emulation of the Microprocessor Intel 80386 

 

20 

 

 

5. The 80386 MICROPROCESSOR INSTRUCTION SET and 

ADDRESSING MODEL 

         The instruction set of a microprocessor defines the basic operations that a programmer 

can make the device perform. The 80386DX microprocessor provides a powerful instruction 

set that contains more than 150 basic instructions. The wide range of operands and addressing 

modes permitted for use with these instructions further expands the instruction set into many 

more executable instructions at the machine code level. For instance, the basic MOV 

instruction expands into more than 30 different machine level instructions. 

         The instruction set of the 8086 and 8088 microprocessors, called the basic instruction 

set, was enhanced in the 80286 microprocessor to implement what is known as the extended 

instruction set. This extended instruction set includes several new instructions and implement 

additional addressing modes for a law of the instructions already available in the basic 

Instruction set. (6)   

 

5.1. Addressing Modes of the 80386DX Microprocessor 

        When the 80386DX executes an instruction, it performs the specified function on data. 

These data called operands, may be part of the instruction, may reside in one of the internal 

registers of the microprocessor may be stored at an address in memory, or may be held at an 

I/O port. To access these different types of operands, the 80386DX is provided with various 

addressing modes. An addressing mode is a method of specifying an operand. The addressing 

modes are categories into three types register operand addressing, immediate operand 

addressing, and memory operand addressing. Let us now consider in detail the addressing 

modes in each of these categories. (6)  

5.1.1. Register Operand Addressing Mode 

          With   the register addressing mode the operand to be accessed is specified as residing 

in an internal register of the80386DX. Figure (5) lists the internal registers that can be used as 

a source or destination operand. Notice that only the data registers can be accessed in byte, 

word, or double-word sizes. 

          An example of an instruction that uses this addressing mode is:  

 

 

 



Emulation of the Microprocessor Intel 80386 

 

21 

 

MOV AX, BX 

 

Register 

Operand size 

Byte(Reg8) Word(Reg16) Double 

Word(Reg32) 

Accumulator 

Base 

Count 

Data 

Stack pointer 

Base pointer 

Source index 

Destination index  

Code segment  

Data segment  

Stack segment 

E data segment 

F data segment  

G data segment 

 

AL, AH 

BL, BH 

CL, CH 

DL, DH 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

AX 

BX 

CX 

DX 

SP 

BP 

SI 

DI 

CS 

DS 

SS 

ES 

FS 

GS 

 

EAX 

EBX 

ECX 

EDX 

ESP 

EBP 

ESI 

EDI 

- 

- 

- 

- 

- 

- 

 

Fig. (5): Direct addressing register and operand sizes. 

          This stands for move the word-wide contents of EBX, which is the source operand BX, 

to the word location in EAX. This is identified by the destination operand AX. Both the 

source and destination operands have been specified as the contents of internal registers of the 

80386DX.(6) 

5.1.2. Immediate Operand Addressing Mode 

           If an operand is part of the instruction instead of the contents of a register or memory 

location, it represents what is called an immediate operand and is accessed using the 

immediate addressing mode. Figure (6) shows that the operand, which can be 8 bits (Imm8), 

16bits (Imml6), or 32 bits (Imm32) in length, is encoded as part of the instruction. Since the 

data are encoded directly into the instruction, immediate operands normally represent constant 

data. This addressing mode can be used only to specify a source operand. 

 In the instruction:                 MOV     AL, 15 H 



Emulation of the Microprocessor Intel 80386 

 

22 

 

           The source operand 15H (1516) is an example of a byte-wide immediate source 

operand. The destination operand, which is the contents of AL, uses register addressing. Thus 

this instruction employs both the immediate and registers addressing modes.(6) 

       

Opcode Immediate operand 

                         

                     Fig. (6): Instruction encoded with an immediate operand    

                        

                                                                             

5.2. 16-Bit Memory Operand Addressing Modes 

           To reference an operand in memory, the 80386DX must calculate the physical address 

(PA) of the operand and then initiate a read or write operation for this storage location .The 

80386DX MPU is provided with a group of addressing modes known as the memory operand 

addressing for the purpose. The capabilities of these addressing modes have been enhanced 

significantly in the 80386DX compared to how they operated in the 16-bit members of the 

80x86 families. In our examination of register operand addressing and immediate operand 

addressing, we found that the new 32-bit extensions could not be used if the objective is to 

write 16-bit compatible software. 

           The value of the EA can be specified in a variety of ways. One way is to encode the 

effective address of the operand directly in the instruction. This represents the simplest type 

of memory addressing, known as the direct addressing mode.  

           Figure (7) shows that an effective address can be made up from as many as three 

elements: the base, index, and displacement. Using these elements, the effective address 

calculation is made by the general formula 

EA = base + index + displacement  

PA= SBA: EA 

PA= Segment base: Base +index + displacement 

 

























−−

−−
+

























+

















































=
ntdisplacemebit

ntdisplacemebit

DI

SI

BP

BX

ES

DS

SS

CS

PA
16

8
:  

Fig. (7): Real-mode physical and effective address computation for 



Emulation of the Microprocessor Intel 80386 

 

23 

 

Memory Operand 

           Figure (7) also identifies the registers that can be used to hold the values of the 

segment base and index. For example, it tells us that any of the six-segment registers can be 

the source of the segment base for the physical address calculation and that the value of base 

for the effective address can be in either the base register (BX) or base pointer register (BP). 

Also identified in Figure (7) are the sizes permitted for the displacement . (6)   

           

5.3. Direct Addressing Mode 

           Direct addressing mode is similar to immediate addressing in that information is 

encoded directly into the instruction. However, in this case the instruction opcode is followed 

by an effective address instead of the data. As shown in Figure (8). We find that the offset is 

stored in the two byte locations that follow the instruction's opcode. As the instruction is 

executed, the 80386DX combines 123416 with 020016 to get the physical address of the source 

operand as follows: 

                                       PA = 0200016 + 123416 

                                             = 0323416 

           Then it reads the word of data starting at this address, which is BEED16 and load it into 

the CX register.(6)  

PA = Segment base-Direct address 

PA = 































GS

FS

ES

SS

DS

CS

   :  addressDirected −  

Fig. (8): Computation of a direct memory address. 

 

5.4. Register Indirect Addressing Mode 

           Register indirect addressing mode is similar to the direct addressing we just described, 

in that an effective address is combined with the contents of DS to obtain a physical address. 

However, it differs in the way the offset is specified. Figure (9) shows that this time the 16-bit 

EA resides in either a base register or an index registers within the 80386DX. The base 

register can be either base register BX or base pointer register BP, and the index register can 



Emulation of the Microprocessor Intel 80386 

 

24 

 

be source index register SI or destination index register DI. Another segment register can be 

referenced by using a segment-override prefix.  

           If SI contain 123416 and DS contain 020016 the result produced by executing the 

instruction is that the contents of the memory location at address  

16=  03234  161234 +16 PA =  02000 

are moved into the AX register. 

PA = 































GS

FS

ES

SS

DS

CS

   : 































DI

SI

BP

BS

 

Fig. (9): Computation of an indirect memory address. 

           The result produced by executing this instruction, However, they differ in the way in 

which the physical address was generated. (6)  

 

5.5. Based Addressing Mode 

       In the based addressing mode, the effective address of the operand is obtained by adding 

a direct or indirect displacement to the contents of either base register BX or base pointer 

register BP. As shown in Figure (10) we see that the value in the base register defines the 

beginning of a data structure, such as a record, in memory and the displacement selects an 

element of data within this structure. To access a different element in the record, the 

programmer simply changes the value of the displacement.  

           A move instruction that uses based addressing to specify the location of its destination 

operand is as follows: 

MOV    ( )BX   + 1234H, AL 

           This instruction uses base register BX and direct displacement 1234H to derive the EA 

of the destination operand. The base addressing mode is implemented by specifying the base 

register in brackets followed by a + sign and direct displacement. The fetch and execution of 

this instruction causes the 80386DX to calculate the physical address of the destination 

operand from the contents of DS, BX, and the direct displacement. The result is: 

                                             PA = 0200016 +1000 16 +123416 =0423416 



Emulation of the Microprocessor Intel 80386 

 

25 

 

           Then it writes the contents of source operand AL into the storage location at 0423416. The 

result is that ED16 is written into the destination memory location. Again, the default segment 

register for this physical address calculation is DS, but it can be changed to another segment 

with the segment-override prefix. 

           If BP is instead of BX, the calculation of the physical address is performed using the 

contents of the stack segment (SS) register instead of DS. This permits access to data in the 

stack segment of memory.(4)                        

      PA = 































GS

FS

ES

SS

DS

CS

   : 































DI

SI

BP

BS

+








−−

−−

ndisplacemebit

ntdisplacemebit

16

8
 

Fig. (10): Computation of based address 

 

5.6. Indexed Addressing Mode 

       Indexed addressing mode works in a manner similar to that of the based addressing mode. 

Indexed addressing mode uses the value of the displacement as a pointer to the starting point 

of an array of data in memory and the contents of the specified register as an index that selects 

the specific element in the array that is to be accessed. For instance, for the byte-size element 

array in figure (11) the index register holds the value n. In this way, it selects data element n 

in the array. The physical address is obtained from the value in a segment register, an index in 

the SI or DI register, and a displacement. (6) 

                                PA = Segment base: index + displacement 

PA = 































GS

FS

ES

SS

DS

CS

   : 































DI

SI
+









−−

−−

ndisplacemebit

ntdisplacemebit

16

8
 

Fig. (11): Computation of indexed address 

 

 

 



Emulation of the Microprocessor Intel 80386 

 

26 

 

6. EMULATORS 

           An emulator is a software program which enables one computer to act like another. It'll 

emulate the graphics, peripherals, sound, timing, etc. Ideally, the emulator will run pretty 

much everything the emulated computer could run, and provide a similar "experience." 

           First contribution to old computer emulation is Sensible Keyboard. Old computers had 

keyboards which weren’t like the PC keyboards used today. Maybe the left parenthesis was 

shift 8 and the right shift 9; and maybe the double quote "was shift 2. Most emulators map the 

keyboard to the PC keyboard, ignoring the PC keyboard labeling for the sake of the 

emulation. 

           Second contribution to old computer emulation is Quicktype. Even using Sensible 

keyboard, it may be inconvenient to type on the emulated computer. So, you’d type a text 

document using something like Notepad. Then you’d use my emulator’s Quicktype feature to 

read that document, and, Quicktype will enter the program from the file into the emulated 

computer, just as if you were typing it from the emulated computer’s keyboard, only quicker. 

It’s very useful. 

           Today, we may replace old computer system with a new one, because of upgrading 

software that were used in the old computer, and if they may not run in the new computer. 

The existing software is too important to discard. We easily make out this point by reflecting 

of Intel's microprocessors 8086, 80286, 80386 and the add-on card of IBM PC which can 

execute the software of IBM 360, 370. 

           If we give up existing software, we might suffer for long time until perfect 

replacement. But, sometimes the replacement which cannot provide the compatibility would 

be unavoidable, then we are eager to reduce labors dedicated to replacement. The better 

choice of new computer provides us with the better computing environment, and the smooth 

replacement of two computers would be desired. 

           To do this efficiency, it is recommended to employ the real-time emulator that has new 

operating environment which is compatible with the anticipate computer, and has special 

hardware which can execute the instructions of the old computer perfectly. We can execute 

the instructions of the old computer perfectly. We can convert the programs of old computer 

to the new one's without time consuming with this real-time emulator. As shown in figure 

(12). (7)     

 



Emulation of the Microprocessor Intel 80386 

 

27 

 

 

Fig. (12): Replacement of computer 

 

6.1 Microprocessor Emulation 

           Programmers have used microprocessor emulation for many years as a software 

development vehicle. It allows programmers to write and test code on a development platform 

before testing on target hardware. This same concept can be practical when the target 

microprocessor architecture does not lend itself to efficient implementation. (8) 

           Microprocessors weren't always designed with in-circuit emulation in mind. But as the 

microprocessors evolved, the need to support in-circuit emulation within the microprocessors 

became obvious. Without microprocessor support, it would be very difficult, if not 

impossible, to halt the microprocessor anywhere on a specified breakpoint event, let alone 

reconstruct an instruction disassembly trace. As time went on, many more emulation features 

were built into the microprocessor. On the 80186 a few pins were implemented. On the 

80286, a few pins and a few instructions were implemented. The 80386 expanded these 

support pins, added a few more instructions, some debug registers, and a few special bus 

cycles. The 80486 refined these same features. (9) 

 

 

 



Emulation of the Microprocessor Intel 80386 

 

28 

 

7. SIMULATION PROGRAM 

           Visual Basic software was used to design suggested simulation program for the 

microprocessor Intel 80386. Designed program consists of two main screens; program editor 

screen and Emulation and execution screen. 16-bit manipulation operations for real mode are 

used in design. 

           A brief flowchart for designed emulation program is shown in figure (13).  

           As shown in the flowchart, the assembly language program written in the Intel 80386 

instructions is written in Edit screen. The written program is checked for errors, so if there 

any error it must be corrected manually. After error correcting or if there is no error, the 

program can be switched to Emulator screen. On emulator screen the program can be run and 

the results can be seen. The internal registers of the microprocessor Intel 80386 and memory 

locations can be seen on Emulator screen. Results then can be examined in registers and 

memory locations. After program running, it can be returned to Editor screen in order to write 

another assembly language program for the microprocessor Intel 80386. 

           A memory of 1 MByte is used and expected as ROM and RAM started at location 

00000 H, 20 bits of address bus are used to address it. 

           Examples of some instructions and programs were written on edit screen and executed 

in Emulator screen successfully. 

           MOV instructions are tested successfully by writing instructions and executing them. 

Samples of different MOV instructions are illustrated as follows. 

           Direct addressing and immediate addressing MOV instructions were written in 

program editor screen as shown in figure (14). 

           Emulation and execution for them are shown in figure (15). Contents of memory 

locations and CPU registers are illustrated. 

           Register addressing and immediate addressing MOV are also used as another example.      

The instructions were written in program editor screen as shown in figure (16). 

           Their Emulation and execution for them are shown in figure (17). Also content of 

memory locations and registers are illustrated 

 

 



Emulation of the Microprocessor Intel 80386 

 

29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13): Flowchart of Emulation program operation. 

 

 

 

 

 

Check the program for 

errors 

Write the assembly 

program on edit screen  

Start 

Is their 

any error?  

Switch to Emulator 

screen 

Correct errors 

Run the assembled 

program 

The results shown on 

Emulated registers 

and memory 

locations 

END 



Emulation of the Microprocessor Intel 80386 

 

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. (14): Direct addressing and immediate addressing MOV instructions written on 

Editor screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (15): Direct addressing and immediate addressing MOV instructions execution on 

Emulation and execution screen. 

 



Emulation of the Microprocessor Intel 80386 

 

31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. (16): Register addressing and immediate addressing MOV instructions written on 

Editor screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (17): Register addressing and immediate addressing MOV instructions execution on 

Emulation and execution screen. 

 



Emulation of the Microprocessor Intel 80386 

 

32 

 

 

8. CONCLUSION 

1. The designed emulation program is not the first but it is extended to recent emulation 

programs for Intel processors. 

2. The designed program can be used for executing 32-bit operations and can be 

developed to do this easily, while the Intel 8086 Emulator can execute 16-bit 

operations.  

3. The designed program can be used in university laboratories to learn students because 

it is designed to be easy for using by any on. 

 

9. SUGGESTIONS 

1. It is suggested to use emulation programs for advanced microprocessors learning in 

university laboratories. 

2. Designing a complete emulator for the microprocessor 80386 to use it in universities 

laboratories. 

3. Designing emulation programs for advanced processors like 80x86 Intel processors 

series other than 80386. 

 

REFERENCES 

1. Jacek Majwiski, 1992, "Functional Simulation in Microprocessors Applications 

Teaching", Cybernetics Institute, University of Wroclaw, Wroclaw, Poland, p (1-3). 

2. Nancy A. Day, 1999, "Symbolic Simulation of Microprocessor Models Using Type 

Classes in Haskell", Conference on Correct Hardware Design and Verification 

Methods, Penn state and NEC, p (1-2). 

3. Zaatar, W.   Nasr, G.E., 2002, "An Implementation Scheme for a Microprocessor 

Emulator", Lebanese American Univ., Byblos, IEEE, (abstract).  

4. Werstein, P. Cooper, C., 2002, "The use of Java to develop a microprocessor 

emulator", Otago Univ., Dunedin, IEEE, (abstract). 

5. Barry B. Bray, 2000, "The Intel Microprocessors, Architecture, Programming, and 

Interfacing", 5th Edition, Prentice Hall, New Jersey, USA, p (673-689). 

6. Walter A. Triebel, 1998, "The 80386, 80486 and Pentium Processors, Hardware, 

Software and Interfacing", Prentice Hall, New Jersey, USA, p (62-74). 



Emulation of the Microprocessor Intel 80386 

 

33 

 

7. Nachyuck Chang, 1989, "Development of a Microprogrammed Real-Time Emulator 

for the WestingHouse 2500 Computer, Part I Hardware", Seol National University.  

8. Roman-Jones, 2003, "Emulate 8051 Microprocessor in PicoBlaze IP Core", Roman-

Jones, Inc. 

9. Robert R. Collins, 1999, "In-Circuit Emulation: How the Microprocessor Evolved 

Over Time", Intel Secrets Web Site and Robert Collins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Emulation of the Microprocessor Intel 80386 

 

34 

 

 

 80386محاكاة للمعالج الدقيق إنتل 

 

 

 

 

  الخلاصة

ة في تصميم الحاسوب. حيث تستخدم المحاكاة في تحويل أو مضاهاة المعااالج تعد محاكاة المعالج الدقيق من التطبيقات الحديث

معينة مثل: تدريس تركيب المعالج الدقيق و لغة التجميع في مختبرات الجامعااات.  أغراضبرنامج لأستخدامه في  إلىالدقيق  

تاام لاابعع ايعااالات نقاال البيانااات مثاال . التنفيذ 80386هذا البحث يقترح تصميم و تنفيذ برنامج محاكاة للمعالج الدقيق انتل 

 MOVالعنونة. البرنامج صمم باستخدام الفيجوال بيسك. كما تم اختبااار بعااع ايعااالات    أنماطو بمختلف    MOVايعالات  

 بنجاح.

 

 

 سميرة عامر عبد القادر 

 مدرس مساعد

 جامعة ديالى  -كلية التربية 


