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The complexity of segmenting a brain tumour is critical in medical image processing. 

Treatment options and patient survival rates can only be improved if brain tumours 

can be prevented and treated. Segmentation of the brain is the most complex and time-

consuming task to diagnose cancer utilizing a manual approach for numerous 

magnetic resonance images (MRI). The aim of MRI brain tumour image segmentation 

that to build an automated magnetic resonance imaging tumour segmentation system 

with separate the area of tumour and provided a clear boundary of the tumour region. 

U-Nets with different transfer learning models as backbones are presented in this 

paper, there are ResNet50, DenseNet169 and EfficientNet-B7. Brain lesion 

segmentation is performed using the multimodal brain tumor segmentation challenge 

2020 dataset (BraTS2020). Based on MRI scans of the brain, the tumor segmentation 

technique is assessed using F1-score, Dice loss, and intersection over union score 

(IoU). The U-Net encoder used with EfficientNet-B7 outperforms all other 

architectures in terms of performance metrics across the board. Overall, the results of 

this experiment are rather excellent. The Dice-loss score was 0.009435, and the score 

of IoU was 0.7435, F1-score was 0.9848, accuracy was 0.9924, precision was 0.9829, 

recall was 0.9868, and specificity was 0.9943. The U-Net with EfficientNet-B7 

architecture was shown to be crucial in the treatment of brain tumors, according to the 

findings of the experiments. 
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1. Introduction 

Brain tumours are abnormal masses of brain 
tissue. A very hard skull protects the brain. Any 
development in such a tiny area might cause 
issues [1]. Four conventional magnetic 
resonance imaging (MRI) modalities are 
employed in brain image studies: native T1-
weighted (T1), T2 fluid-attenuated inversion 
recovery (T2-FLAIR), T2-weighted (T2), and 
post-contrast T1-weighted (T1ce) [2]. 
Automatic methods for segmenting brain 
lesions are frequently used hand-crafted features 
such as edges, corners, histogram of gradient, 
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local binary pattern. The classifier is given these 
features after they have been extracted. The 
training procedure of the classifier is not 
affected by the nature of those features. Figure 
1 depicts the four different MRI modalities [2]. 

Semantic segmentation is commonly used 
in medical imaging to identify the precise 
location and the form of the body's structures 
and is essential to the proper assessment of 
medical disorders and their treatment.  

Deep learning has recently achieved 
substantial advancements in a range of computer 
vision applications, particularly object 
detection, image classification, and semantic  
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Figure 1.  Four MRI Modalities. Sourced From [2] 

segmentation, to name a few examples. With 
their remarkable performance and high accuracy 
in image segmentation, deep neural networks 
have recently gained popularity among 
researchers. Detection and segmentation of the 
human brain is a difficult problem to solve in 
reality due to its complexity. When it comes to 
tumour-bearing data, it is the 3D or 2D 
information that varies widely from patient to 
patient in terms of the structure, size, and 
location of the tumour. In addition, MRI 
information of brain tumours extracted from 
diagnostic scans or synthetic databases is 
inherently complex, requiring a large amount of 
device memory for tumour segmentation. U-Net 
with ResNet50, DenseNet169 and EfficientNet-
B7 provided. In the proposed method, the brain 
MRI images has been augmented, performed 
data pre-processing methods to modify the 
actual data, evaluated different deep learning 
architectures, and offered a comparative study 
of these models. 

This paper was conducted with various 
architectures for brain tumour segmentation. 
Enhanced output was achieved by the proposed 
architecture. It takes just a few seconds to 
segment the image using a trained model. 
Clinical professionals can take hours for manual 
segmentation of tumours, however. In the field 
of image diagnosis, this article is contributing to 
a model that can more accurately and efficiently 
diagnose the tumour. 

This paper discusses techniques for 
segmenting brain tumours. This article is broken 
down into many parts. The introduction and 
background of brain tumours have been 
described in section one, literature review has 
been described in section two, the architectures 
explanation, dataset description and 
performance metrics have been described in 

section three, the proposed system, pre-
processing the data, training and 
implementation details, the experimental results 
have been described in section four and 
conclusion with future work has been described 
in section five. 

2. Literature review 

Over the last few decades, research into the 
automatic segmentation of brain tumours has 
increased, showing an increasing demand for 
this field of study, which is still ongoing.  
Several strategies for detecting and segmenting 
tumours on MRI Image data have indeed been 
proposed in the research. In 2015, O. 
Ronneberger et al. [3] provides a homogeneous 
fully CNN named U-Net. U-Net greatly 
increased effectiveness in medical image 
segmentation tasks, leaving the down sampling 
process to link with the feature graph of the 
down sampling process to capture contextual 
information and the correct up sampling process 
to establish the correct location. U-Net is 
frequently utilized in the sector of medical 
image analysis as a result of it being 
exceptionally efficient in the final training of a 
limited number of images. 

In 2017, H. Dong et al. [4], Deep 
convolutional networks based on U-Nets was 
applied to segment brain tumours, this study was 
evaluated on multimodal brain tumor image 
segmentation (BraTS 2015) datasets, dice 
similarity coefficient (DSC) has been compute 
for high grade glioma (HGG) and low grade 
glioma (LGG) combined cases and obtained 
0.86 of the complete tumor segmentation, the 
limitation of this segmentation method has been 
evaluated using a cross-validation scheme, 
which can be provide an unbiased predictor. 
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In 2020, R. A. Zeineldin et al. [5], residual 

neural network, dense convolutional network, 

and NASNet have been utilized in this study to 

build a fully programmed brain tumor 

recognition and segmentation, this deep 

learning architectures have been evaluated on-

line based MRI datasets of brain tumor 

segmentation BraTS 2019, dice and Hausdorff 

distance scores of obtained segmentation results 

are about 0.81 to 0.84 and 9.8 to 19.7 

correspondingly, the lack of this study was that 

false positives (FP) indicated was high values of 

both recall and specificity, which might not 

precisely reflect the actual performance. In 

2020, X. Feng et al. [6] produced a 3D U-Net 

ensemble for brain tumour segmentation, 

multimodal brain tumor segmentation (BraTS 

2018) challenge has been used in the study, the 

limitation of this structure , it hard to pick of  the 

best model and/or hyper-parameter set because 

of that most models perform similarly. It is 

indeed one disadvantage of DCNN as the 

“black-box” nature of the network makes it 

challenging to analyze the effect of network 

structure and parameter except from the final 

performance. In 2021, T. Sadad et al. [7] 

developed U-Net with ResNet50 architecture 

for segmentation of tumours utilizing the 

Figshare dataset, getting an IoU score of 0.9504. 

In 2021, F. Isensee et al. [8], nnU-Net utilized , 

nnU-Net pipeline's segmentation performance 

has been demonstrated to be greatly enhanced 

by the addition of BraTS specific characteristics 

such as postprocessing, data augmentation, 

and region-based training. For the BraTS 

challenge 2020 segmentation problem, excellent 

results have been obtained using the nnU-Net 

configuration's baseline setup, however, one 

limitation of this approach is the lack spans a 

small number of the modifications and lacks 

sufficiently extensive experimental validation 

thereof. In 2020, P. K. Gadosey et al. [9] 

introduce the stripped-down U-Net (SD U-Net), 

experiments on the benchmark dataset of the 

Internatioanl symposium on biomedical 

imaging (ISBI) challenge for segmentation of 

neuronal structures in electron microscopic 

(EM) stacks and the medical segmentation 

decathlon (MSD) challenge brain tumor 

segmentation (BRATs) dataset show that the 

proposed model, a deep neural network that is 

highly fast, compact, and computationally 

effective for segmenting medical images on 

devices with low processing resources. 

Although these approaches offer certain 

advantages in some areas, the problem of 

unequal tumour and background voxel 

distribution in brain tumour segmentation must 

be addressed immediately. As a result, this study 

presents a learning mechanism for improving 

the segmentation approach. However, the 

disadvantage of depthwise convolutions 

compared with standard convolutions is lower 

accuracy performance. In 2020, A. A. 

Pravitasari et al. [10] for the segmentation of 

MRI brain tumours proposed UNet-VGG16. 

This model or architecture is a fusion of the U-

Net and VGG16 architectures, with transfer 

learning used to simplify the U-Net architecture, 

real dataset from general hospital has been used 

in this study, the learning dataset shows that this 

approach has a high accuracy of 96.1%. 

Calculating the correct classification ratio 

(CCR) and comparing the segmentation result 

with the ground truth are used to validate the 

segmentation result. With a mean CCR score of 

95.69 %, this UNet-VGG16 was able to 

distinguish the brain tumour area, the size of 

datasets analyzed was limited. 

3. Preliminaries 

3.1 Method 

3.1.1 U-Net architecture 

In 2015 for the first time, O. Ronneberger et 

al.[3] suggested the U-Net architecture, a 

convoluted network designed only for 

biological-image analysis. The model is shaped 

like a "U". To put it simply, the encoder is a 

simple convolutional process, whereas its 

decoder is made up of 2D convolutional layers 

that have been transposed. The block diagram of 

U-Net architecture is depicted in Figure 3. The 

contraction route (also called the encoder 

component) is the primary route in the U-Net 

structure and is often used to capture the 

framework of the input image.  
The encoder is made up of maximum 

pooling and convolution layers arranged one 
above the other. To permit precise localization 
using transposed convolutions, the second route 
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is an uneven increasing route (additionally 
called the decoder component). Fully 
convolutional networks can only interpret 
images of a certain size since they have no thick 
layers, making them unable to handle larger 
images. Before max-pooling, two consecutive 
convolution layers are implemented in this type 
of architecture. The dimensions of the data are 
halved when pooling is applied, as a result, a lot 

of data will be lost. So, before each convolution, 
pooling layers are stacked to build up richer data 
representation without losing all spatial 
information quickly. To the U-Net structure, we 
added skip connections among the first 
convolution layer and the max-pooling layer on 
each level. The key purpose of this was to 
increase the accuracy and uniform distribution 
of parameters in the layers. 
 

 

Figure 3. U-Net architecture sourced from [5] 

3.1.2 ResNet architecture 

For ImageNet's greatest image 

identification task, K. He et al. [11] built 

ResNet, a neural network that had an error rate 

of 3.57%. This was done using a 152-layer deep 

CNN architecture. ResNet's design promoted 

the use of deeper networks than AlexNet and 

VGG-Net. Skip connections (also known as 

residual connections) are included in the ResNet 

architecture to reduce data redundancy during 

deep network training and optimization. The 

remaining connections might be used to train a 

1001-layer model. The bulk of ResNet's 

architecture is made up of residual blocks. 

ResNet's residual blocks are connected, even 

though the layers of a shallow neural network 

are linked. By increasing the network's capacity, 

ResNet connections maintain their information 

and shorten the training period of the model.     

3.1.3 DenseNet architecture 

It was introduced by G. Huang et al. [12] as 

a feed-forward network that links one layer to 

the next, and it has since gained widespread 

acceptance. To ensure that the deep convolution 

network was trained more accurately and 

efficiently, a deeper convolution network with 

shorter connections between layers near to the 

input and close to the output was employed to 

ensure that the deep convolution network was 

taught more precisely and effectively. Non-

linear transformation is prevented via direct 

connections from each layer to the next in 

DenseNet, unlike ResNet skip-syncs. When it 

comes to function mappings, all prior levels 

from x0 all the way up to xl-1 are taken into 

account. According to the authors, "the 

wavelength of the feature-map created in layers 

0, 1, 2,..., l-1 is described as  xl = Hl ([x0 , x1 , … 

, xl−1 ]) where [x0, x1,..., xl-1 ]” [12]. 

3.1.4 EfficientNet architecture 

The EfficientNet model was developed by 

M. Tan and Q. V. Le [13] of Google Research's 
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Brain team, who published their findings in the 

journal "EfficientNet: Rethinking Model 

Scaling for Convolutional Neural Networks". 

To begin, a new baseline architecture named 

"EfficientNetB0" was constructed and then 

scaled up to build the EfficientNet family 

through a compound scaling method. Eight 

EfficientNet variations are powered by this 

method, ranging from 5.3 million parameters to 

66 million. 
The researchers began by automating the 

construction of neural networks by constructing 
a primitive network using a method known as 
the search for neural network architecture. It 
maximizes both accuracy and efficiency by 
calculating the number of floating-point 
operations per second (FLOPS). This design 
makes use of convolution with a moveable 
inverted bottleneck (MBConv). The amount of 
these MBConv segments vary according to the 
EfficientNet family. As we proceed through 
EfficientNet B0-B7, the depth, width, 
resolution, and model size all rise, while the 
accuracy also increases. The EfficientNetB7 
model outperforms earlier state-of-the-art 
CNNs on ImageNet [13]. 
 

3.2 Data set 

The publicly accessible benchmark dataset 

was utilized in this paper. The BraTS 2020 

dataset has been suggested for the identification 

and segmentation of brain lesions in an 

automated manner. 

The Brain Tumor Segmentation Study 

(BraTS) has traditionally been designed to 

examine cutting-edge techniques for the 

segmentation of brain tumors in magnetic 

resonance imaging (MRI). The BraTS2020 

dataset was produced entirely from preoperative 

data collected from a variety of institutions, and 

it focuses on segmenting brain tumors that are 

fundamentally diverse (in terms of shape, 

histology, and appearance), including gliomas. 

This data consists of 293 HGG and 76 low 

grade glioma (LGG) instances are included in 

the BraTS 2020 training dataset. T1, T2, T1ce, 

and T2-FLAIR imaging modalities are co-

registered with a voxel size of 240 x 240 and an 

isotropic resolution of one millimeter for all 

imaging modalities, Figure 2 shows four 

modalities of BraTS2020 dataset with ground 

truth.  

 

 

Figure 2.  BraTS2020 dataset modalities with ground truth 
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The training data has annotations, but the 

validation and testing datasets (125 and 166 

instances, respectively) do not. Estimated 

volumes of segmentation may be submitted to 

the organizer's website by participants to 

compare their methods. For the validation 

assessment, several contributions are permitted; 

however, for the final testing evaluation, only 

one submission is permitted per participant. 

NifTI files with T1, T2, T1ce, and T2-FLAIR 

descriptions are supplied for all multimodal 

BraTS scans. These scans came from diverse 

clinical procedures and scanners from various 

organizations. Images were manually 

segmented by one to four assessors for all of the 

datasets. There are many types of tumor cores, 

including necrotic and non-enhancing tumor 

cores, enhancing tumors, peritumoral edema, 

and others.  

3.3 Performance metrics 

3.3.1 Accuracy 

      Accuracy is a measure of the number of 
correct predictions out of all predictions. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                    (1) 

 

Here, true positives (TP) and negatives 

(TN), as well as false positives (FP) and 

negatives (FN). 

3.3.2   Precision  

Precision is a measure of the accuracy of a 

positive prediction. In other words, if an 

outcome is predicted to be positive, how certain 

that it can be actually positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
                                 (2) 

3.3.3   Recall  

The recall is the measure of how many true 

positives are predicted out of all actual positives 

in the dataset. 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                         (3) 

3.3.4   Specificity 

Specificity is the measure of how many true 
negatives are predicted out of all actual 
negatives in the dataset. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                         (4) 

3.3.5 IoU Score 

To compute the IoU score, divide the 
intersection point between the actual data 
(ground truth) and predicted segmentation by 
the point of union between the actual data 
(ground truth) mask and predicted segmentation 
mask.” When assessing how much overlap there 
is between two masks or bounding boxes [14], it 
is a valuable statistic. 

𝐼𝑜𝑈 =  
(𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

(𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)
                     (5) 

3.3.6 F1-Score 

The F1 score is determined by using "the 
harmonic mean of recall and precision" as the 
starting point [15]. The F1 score is also the same 
as the dice score. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
              (6) 

“An F1-score may have the highest possible 

value of 1.0, which shows perfect precision and 

recall, and the highest possible value of 0 if 

either precision or recall is zero”. 

3.3.7 Dice loss 

In this section, we'll talk about dice loss, 
which is computed as one minus the dice 
coefficient. The dice coefficient is a common 
metric for pixel segmentation that may also be 
used as a loss function if it is altered to work in 
this manner. " The dice coefficient is computed 
by multiplying the intersection area by the total 
number of pixels in both images" [16]. The dice 
coefficient is determined using the following 
formula: 

𝐷𝑖𝑐𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
                                              (7) 

𝐷𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒                                               (8) 

4. Proposed system 

To ensure the effectiveness of MRI image 

segmentation based on the human brain, 

different pretrained models as U-Net encoder 

addressed such as ResNet50, DenseNet169, and 

EfficientNet-B7. Figure 3 shows the proposed 

approach for segmentation.    The brain MRI 
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images were administered and then used for 

training the segmentation model. The 

segmented image can be predicted using the 

trained model. 

 

Figure 3. Flowchart of the proposed brain tumour segmentation model

4.1 Data preprocessing 

Cropping images from the center is done by 

this method. Standardscaler normalization 

removes any distortion from the MRI intensity 

measurement, which is dependent on the 

imaging technology and scanner utilized. 

The standard score for Sample x is 

computed in the following way: 

𝑍 =
(𝑥 − 𝑢)

𝑠
                                                       (9) 

 
“Where s is the standard deviation of the 
training samples, or 1 if it is False, and u denotes  
the mean of the training samples, or 0 if it is 
False. According to the standard scalers 
operating concept, the data will be transformed 
into distribution with a standard deviation of one 
and a mean of zero”. 

This is done feature by feature in the case of 
multivariate data. Figure 4 shows the image 
visualization after pre-processing. 
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Figure 4. Image after preprocessing 

4.2 Training and implementation details 

The BraTS dataset contains MRI images 

and related segmentation output images for 

training and testing models. Clinically skilled 

neuroradiologists correct the output or ground 

truth labeled images. Folders for train and 

validation datasets are included in the BraTS 

dataset. All 369 subfolders in the train data 

folder are organized by modality, and each 

subfolder includes 5 nifty-format images of 5 

distinct modalities. As a result, the train data 

folder has 1845 images. Each of the 125 

subfolders in the validation data folder 

comprises four images of four distinct 

modalities, such as T1, T2-FLAIR, T2, and T1ce. 

As a result, there are a total of 500 images in the 

data folder for validation.  

After evaluating the data, the images are 

pre-processed by standardizing the intensity 

value and cropping them. MRI records are split 

into three categories: train set, test set, and 

validation set. 60% of the images are used as the 

train set (2999 images), 20% are used as the test 

set (1001 images), and 20% are used as the 

validation set (999 images). The training images 

are data augmented, which aids generalization 

and enhances accuracy. Augmentation 

techniques are taken from the albumentation 

library such as grid distortion, random 

brightness contrast, elastic transform, optical 

distortion was employed to enhance the input 

image and offer more information for the model 

to learn. Before we can begin training our 

model, we need to build the learning process. 

This includes an optimizer, a loss function, and 

if desired, additional metrics such as F1-score 

and IoU-score. The Adam optimizer was used, 

with a learning rate of 0.0001. 

A range of approaches U-Net with a variety 

of transfer learning architectures such as 

ResNet50, DenseNet169, and EfficientNet-B7 

in this paper. 

In brain tumor representations, skip 

topologies provide perfect segmentation by 

using a high-level expression from dense 

sequencing layers. The three components of the 

design are bottleneck, contraction, and 

expansion. The expansion is made up of many 

contraction lengths. A convolution level 

addition input is followed by a maximum 

pooling limit for each block. In each block, each 

CNN layer has its sample level, with the lowest 

layer modulating between the expansion and 

contraction levels. After convolutions and 

activations, the ReLU activation function and 

batch normalization were utilized to prevent 

deep learning models from falling out of the 

experiment.  

Features are extracted from the data loader 

to train the machine learning modes. The 

extracted features are then converted to a 2D 

array for better fitting the model. 

4.3      Results & discussions 

The proposed architectures' segmentation 
capabilities evaluated by using IoU, F1 score, 
dice loss, accuracy, precision, recall, and 
specificity metrics. 200 epochs and 16 batch 
sizes are used to train the network. Four 
NVIDIA P40 GPUs are used to train our 
network in Pytorch. 

The performance metrics of all architectures 
of the deep learning models are presented in 
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Table 1. All deep learning architectures are 
beaten in terms of performance by the 
EfficientNet-B7 encoder-based U-Net, 
according to Table 1. The U-Net with 
EfficientNet-B7 performed better with a dice 
loss of 0.009435, IoU score of 0.7435, F1 score 

of 0. 9848, the accuracy of 0.9924, precision of 
0.9829, recall of 0.9868, and specificity of 
0.9943. In the U-Net with the EfficientNet-B7 
model, the proportion of intersection between 
the targeted mask and our predicted output is 
higher. 

                                                   

  
Figure 5. Dice Loss and F1 Score Graph of U-Net with EfficientNet-B7 

 

The training parameters are the most 
important aspect to take into account when 
calculating the compute time of a CNN. Using 
the same dataset and setting up all training 
parameters, in the same manner, is thus critical. 
After the network has been trained, it may be 
used to image segmentation. Image 
segmentation is completed in a matter of 
seconds when using the previously trained 
model. Manual tumor segmentation by 
clinicians, on the other hand, might take many 

hours or even days. Accurate, rapid, and low-
cost image segmentation approaches are 
recommended. There is a chance that this might 
save the lives of countless individuals by 
allowing physicians to diagnose a brain tumor 
quickly and precisely. 

 Figure 5 shows the dice loss and IoU score 

recorded for each epoch for U-Net with 

EfficientNet-B7 architecture Figure 6 depicts 

the prediction of U-Net with EfficientNet-B7. 
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Figure 6. Segmentation result based on U-Net with EfficientNet-B7 encoder architecture 

The segmentation is done to the eight-

testing data under of U-Net with EfficientNetB7 

as encoder. The visualization of segmentation 

results is described in Figure 6. This figure has 

shown that segmentation results of sample 

sequence could recognize the tumour area as 

region of interest in various tumour size and 

location, both on the right or left of the brain. 
 

Table 1: Results of deep learning models 

 Model Dice Loss F1 Score IoU Accuracy Precision Recall Specificity 

U-Net_ResNet50 0.009789 0.9801 0.7374 0.9903 0.9751 0.9864 0.9916 

U-Net_DenseNet169 0.009848 0.9846 0.7337 0.9923 0.9821 0.9871 0.9940 

U-Net_EfficientNetB7 0.009435 0.9848 0.7435 0.9924 0.9829 0.9868 

 

0.9943 
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        F. Isensee et al. [8] proposed segmentation 

of brain tumours using the BRATS2020 dataset, 

which is the same dataset that is used in this 

study. The model achieved the dice score of 

88.95%, but our proposed model achieved 

98.48% which is better than the F. Isensee et al. 

[8] model. An evaluation of U-Net using 

EfficientNet B7 and a comparison to other 

current approaches can be found in Table 2. The 

proposed model performed well when compared 

to the findings of earlier studies, according to 

the comparison. 

Table 2: Comparison of the proposed model with previous works 

                  Author                           Network Accuracy F1/Dice Score  

F. Isensee [8] 

P. K. Gadosey [9] 

    U-Net ResNet50 

SD-UNet 

- 

98.66 
0.8895 

82.75 
A. A. Pravitasari [10] 

C. Lyu et al. [17] 

Proposed method 

      UNet-VGG16 

U-Net -VAE 

U-Net EfficientNetB7 

96.1 

- 

0.9924 

- 
0.8729 

0.9848 

5. Conclusion and future work 

 It may be challenging to segment brain 

tumours due to the intricacy of MRI brain 

imaging; nonetheless, its objectives to foresee 

malignancies via the use of artificial intelligence 

models make this effort worthwhile. For the 

automatic segmentation of brain tumours, the 

suggested system makes use of U-Net with 

several transfer learning models as encoder 

architecture. They simplify and expedite the 

imaging and segmentation of brain tumours. 

The U-Net architecture, which makes use of the 

EfficientNet-B7 encoder, outperforms all other 

architectures in terms of performance. Dice loss 

was 0.009435, IoU score was 0.7435, F1 score 

was 0.9848, the accuracy was 0.9924, precision 

was 0.9829, the recall was 0.9868, and 

specificity was 0.9943 for the U-Net with 

EfficientNet-B7. According to the results of the 

tests, the U-Net with EfficientNet-B7 design 

plays a critical role in the treatment of brain 

tumours, particularly in the early stages. The 

suggested U-Net with the EfficientNet-B7 

model offers a framework for predicting the 

segmentation of brain lesions and aids in the 

precise segmentation of the location of the 

lesions, both of which are important. Our study 

reveals that the suggested technique 

outperforms the current approaches for the 

segmentation of brain tumours by a significant 

margin. 
MRI data cannot be completely exploited by 

the 2D U-Net model; hence the architecture 
lacks semantics and local characteristics 
between slices due to the model's restrictions.  

The study could be expanded in the future 
by developing more powerful patch extraction 
techniques to help improve segmentation 
accuracy. So far, we have only introduced the 
use of 2D patches for extraction and training; 
however, this work can be extended to include 
the creation of models to be trained on 3D 
patches to find effective ways to extract 3D 
patches. 
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