Kinetic Study of Ethanol Dehydration to Ethylene and Diethyl Ether in Catalytic Packed Bed Reactor Over ZSM-5 Catalyst

https://doi.org/10.24237/djes.2023.16203

Authors

  • Narin A. Aali Department of Chemical Engineering, Soran University, Erbil, Iraq
  • Ghassan J. Hadi Technical Institute, Northern Technical University, Adour, Iraq

Keywords:

Dehydration, Kinetic models, Mathematical modeling, Ethanol

Abstract

Dehydration of ethanol is one of the crucial processes as it is considered a green route for producing ethylene and diethyl ether and is promoted mainly by economics and environmental appeal. In this study, different kinetic models for ethanol dehydration to ethylene and diethyl ether were developed based on two parallel reactions and different mechanisms. Additionally, a mathematical model of a packed bed reactor was also suggested based on a set of hypotheses for investigating the axial concentration profile of ethanol. Kinetic parameters of each model were estimated by nonlinear regression analysis of obtained experimental data reported in the literature at temperatures between (523.15 – 623.15) K. The analysis showed that the single-site model I for ethylene formation and dual-site (LHHW) model for diethyl ether formation gave the best representation of experimental data compared to other proposed models. Kinetic parameters were found to be in good accordance with the Arrhenius equation with acceptable straight-line plots, and they have been satisfactorily correlated as functions of reaction temperature. The mathematical model presented a smooth linear change in ethanol concentration at various temperatures. The AARD% obtained for each chosen ethylene and diethyl ether formation model were about (1.4502-2.5978) and (0.9135-2.9394), respectively.

Downloads

Download data is not yet available.

References

P. D. Srinivasan, K. Khivantsev, J. M. M. Tengco, H. Zhu, and J. J. Bravo-Suárez, “Enhanced ethanol dehydration on γ-Al2O3 supported cobalt catalyst,” J. Catal., vol. 373, pp. 276–296, 2019, doi: 10.1016/j.jcat.2019.03.024. DOI: https://doi.org/10.1016/j.jcat.2019.03.024

R. Suerz et al., “Application of microreactor technology to dehydration of bio-ethanol,” Chem. Eng. Sci., vol. 229, p. 116030, 2021, doi: 10.1016/j.ces.2020.116030. DOI: https://doi.org/10.1016/j.ces.2020.116030

H. T. Abdulrazzaq, A. Rahmani Chokanlu, B. G. Frederick, and T. J. Schwartz, “Reaction Kinetics Analysis of Ethanol Dehydrogenation Catalyzed by MgO-SiO2,” ACS Catal., vol. 10, no. 11, pp. 6318–6331, 2020, doi: 10.1021/acscatal.0c00811. DOI: https://doi.org/10.1021/acscatal.0c00811

A. Tripodi, M. Belotti, and I. Rossetti, “Bioethylene production: From reaction kinetics to plant design,” ACS Sustain. Chem. Eng., vol. 7, no. 15, pp. 13333–13350, 2019, doi: 10.1021/acssuschemeng.9b02579. DOI: https://doi.org/10.1021/acssuschemeng.9b02579

J. Lee, J. Szanyi, and J. H. Kwak, “Ethanol dehydration on γ-Al2O3: Effects of partial pressure and temperature,” Mol. Catal., vol. 434, pp. 39–48, 2017, doi: 10.1016/j.mcat.2016.12.013. DOI: https://doi.org/10.1016/j.mcat.2016.12.013

K. Van Der Borght, V. V. Galvita, and G. B. Marin, “Ethanol to higher hydrocarbons over Ni, Ga, Fe-modified ZSM-5: Effect of metal content,” Appl. Catal. A Gen., vol. 492, pp. 117–126, 2015, doi: 10.1016/j.apcata.2014.12.020. DOI: https://doi.org/10.1016/j.apcata.2014.12.020

A. H. Motagamwala and J. A. Dumesic, “Microkinetic Modeling: A Tool for Rational Catalyst Design,” Chem. Rev., vol. 121, no. 2, pp. 1049–1076, 2021, doi: 10.1021/acs.chemrev.0c00394. DOI: https://doi.org/10.1021/acs.chemrev.0c00394

D. Y. Murzin, J. Wärnå, H. Haario, and T. Salmi, “Parameter estimation in kinetic models of complex heterogeneous catalytic reactions using Bayesian statistics,” React. Kinet. Mech. Catal., vol. 133, no. 1, pp.1-15, 2021, doi: 10.1007/s11144-021-01974-1. DOI: https://doi.org/10.1007/s11144-021-01974-1

S. Matera, W. F. Schneider, A. Heyden, and A. Savara, “Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis,” ACS Catal., vol. 9, no. 8, pp. 6624–6647, 2019, doi: 10.1021/acscatal.9b01234. DOI: https://doi.org/10.1021/acscatal.9b01234

J. Becerra, E. Quiroga, E. Tello, M. Figueredo, and M. Cobo, “Kinetic modeling of polymer-grade ethylene production by diluted ethanol dehydration over H-ZSM-5 for industrial design,” J. Environ. Chem. Eng., vol. 6, no. 5, pp. 6165–6174, 2018, doi: 10.1016/j.jece.2018.09.035. DOI: https://doi.org/10.1016/j.jece.2018.09.035

I. Rossetti et al., “Ethylene production via catalytic dehydration of diluted bioethanol: A step towards an integrated biorefinery,” Appl. Catal. B Environ., vol. 210, pp. 407–420, 2017, doi: 10.1016/j.apcatb.2017.04.007. DOI: https://doi.org/10.1016/j.apcatb.2017.04.007

A. P. Kagyrmanova, V. A. Chumachenko, V. N. Korotkikh, V. N. Kashkin, and A. S. Noskov, “Catalytic dehydration of bioethanol to ethylene: Pilot-scale studies and process simulation,” Chem. Eng. J., vol. 176–177, pp. 188–194, 2011, doi: 10.1016/j.cej.2011.06.049. DOI: https://doi.org/10.1016/j.cej.2011.06.049

A. G. Gayubo, A. Alonso, B. Valle, A. T. Aguayo, and J. Bilbao, “Kinetic model for the transformation of bioethanol into olefins over a HZSM-5 zeolite treated with alkali,” Ind. Eng. Chem. Res., vol. 49, no. 21, pp. 10836–10844, 2010, doi: 10.1021/ie100407d. DOI: https://doi.org/10.1021/ie100407d

M. Seifert et al., “Ethanol to Aromatics on Modified H-ZSM-5 Part I: Interdependent Dealumination Actions,” ChemCatChem, vol. 12, no. 24, pp. 6301–6310, 2020, doi: 10.1002/cctc.202001344. DOI: https://doi.org/10.1002/cctc.202001344

M. Seifert et al., “Ethanol to Aromatics on Modified H-ZSM-5 Part II: An Unexpected Low Coking,” Chem. - An Asian J., vol. 15, no. 22, pp. 3878–3885, 2020, doi: 10.1002/asia.202000961. DOI: https://doi.org/10.1002/asia.202000961

M. Limlamthong, N. Chitpong, and B. Jongsomjit, “Influence of phosphoric acid modification on catalytic properties of Al2O3 catalysts for dehydration of ethanol to diethyl ether,” Bull. Chem. React. Eng. & Catal., vol. 14, no. 1, pp. 1–8, 2019, doi: 10.9767/bcrec.14.1.2436.1-8. DOI: https://doi.org/10.9767/bcrec.14.1.2436.1-8

Z. Wu, J. Zhang, Z. Su, P. Wang, T. Tan, and F. S. Xiao, “Low-temperature dehydration of ethanol to ethylene over Cu- zeolite catalysts synthesized from cu-tetraethylenepentamine,” Ind. Eng. Chem. Res., vol. 59, no. 39, pp. 17300–17306, 2020, doi: 10.1021/acs.iecr.0c01253. DOI: https://doi.org/10.1021/acs.iecr.0c01253

A. Styskalik, V. Vykoukal, L. Fusaro, C. Aprile, and D. P. Debecker, “Mildly acidic aluminosilicate catalysts for stable performance in ethanol dehydration,” Appl. Catal. B Environ., vol. 271, no. April, p. 118926, 2020, doi: 10.1016/j.apcatb.2020.118926. DOI: https://doi.org/10.1016/j.apcatb.2020.118926

L. Zeng, F. Liu, T. Zhao, and J. Cao, “Superior ZSM-5@γ-Al2O3Composite Catalyst for Methanol and Ethanol Coconversion to Light Olefins,” ACS Omega, vol. 6, no. 29, pp. 19067–19075, 2021, doi: 10.1021/acsomega.1c02369. DOI: https://doi.org/10.1021/acsomega.1c02369

H. Mousavi, J. Towfighi Darian, and B. Mokhtarani, “Enhanced nitrogen adsorption capacity on Ca2+ ion-exchanged hierarchical X zeolite,” Sep. Purif. Technol., vol. 264, no. September 2020, p. 118442, 2021, doi: 10.1016/j.seppur.2021.118442. DOI: https://doi.org/10.1016/j.seppur.2021.118442

R. H. Gil-Horán, J. C. Chavarría-Hernández, P. Quintana-Owen, and A. Gutiérrez-Alejandre, “Ethanol Conversion to Short-Chain Olefins Over ZSM-5 Zeolite Catalysts Enhanced with P, Fe, and Ni,” Top. Catal., vol. 63, no. 5–6, pp. 414–427, 2020, doi: 10.1007/s11244-020-01229-8. DOI: https://doi.org/10.1007/s11244-020-01229-8

M. C. H. Clemente, G. A. V. Martins, E. F. de Freitas, J. A. Dias, and S. C. L. Dias, “Ethylene production via catalytic ethanol dehydration by 12-tungstophosphoric acid@ceria-zirconia,” Fuel, vol. 239, no. June 2018, pp. 491–501, 2019, doi: 10.1016/j.fuel.2018.11.026. DOI: https://doi.org/10.1016/j.fuel.2018.11.026

T. K. Phung, L. P. Hernández, and G. Busca, “Conversion of Ethanol over transition metal oxide catalysts: Effect of tungsta addition on catalytic behaviour of titania and zirconia,” Appl. Catal. A Gen., vol. 489, pp. 180–187, 2015, doi: 10.1016/j.apcata.2014.10.025. DOI: https://doi.org/10.1016/j.apcata.2014.10.025

K. K. Ramasamy and Y. Wang, “Catalyst activity comparison of alcohols over zeolites,” J. Energy Chem., vol. 22, no. 1, pp. 65–71, 2013, doi: 10.1016/S2095-4956(13)60008-X. DOI: https://doi.org/10.1016/S2095-4956(13)60008-X

C. G. Giovanni Chabot, Richard Guilet, Patrick Cognet, “A mathematical modeling of catalytic milli-fixed bed reactor for Fischer–Tropsch synthesis: Influence of tube diameter on Fischer Tropsch selectivity and thermal behavior,” J. Clean. Prod., vol. 87, no. 63–72, pp. 303–317, 2015. DOI: https://doi.org/10.1016/j.ces.2015.01.015

A. T. Jarullah, I. M. Mujtaba, and A. S. Wood, “Kinetic model development and simulation of simultaneous hydrodenitrogenation and hydrodemetallization of crude oil in trickle bed reactor,” Fuel, vol. 90, no. 6, pp. 2165–2181, 2011, doi: 10.1016/j.fuel.2011.01.025. DOI: https://doi.org/10.1016/j.fuel.2011.01.025

G. J. Hadi, “Kinetic Study of Catalytic Dehydration of Ethanol in Fixed Bed Catalytic Reactor,” Ph.D dissertation, Al-Rasheed College of Eng. and Sc., Technology Univ., Baghdad, Apr. 2007.

S. Shetsiri et al., “Sustainable production of ethylene from bioethanol over hierarchical ZSM-5 nanosheets,” Sustain. Energy Fuels, vol. 3, no. 1, pp. 115–126, 2019, doi: 10.1039/c8se00392k. DOI: https://doi.org/10.1039/C8SE00392K

K. Alexopoulos, M. John, K. Van Der Borght, V. Galvita, M. F. Reyniers, and G. B. Marin, “DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5,” J. Catal., vol. 339, pp. 173–185, 2016, doi: 10.1016/j.jcat.2016.04.020. DOI: https://doi.org/10.1016/j.jcat.2016.04.020

R. Batchu et al., “Ethanol dehydration pathways in H-ZSM-5: Insights from temporal analysis of products,” Catal. Today, vol. 355, no. April, pp. 822–831, 2020, doi: 10.1016/j.cattod.2019.04.018. DOI: https://doi.org/10.1016/j.cattod.2019.04.018

K. Y. Yoo, “Effects of reactor type on the economy of the ethanol dehydration process: Multitubular vs. adiabatic reactors,” Korean Chem. Eng. Res., vol. 59, no. 3, pp. 467–479, 2021, doi: 10.9713/kcer.2021.59.3.467.

G. J. Hadi and A. J. Hadi, “Kinetic Study of Methanol Dehydration to Dimethyl Ether in Catalytic Packed Bed Reactor over Resin,” J. Mater. Sci. Chem. Eng., vol. 10, no. 06, pp. 45–58, 2022, doi: 10.4236/msce.2022.106005. DOI: https://doi.org/10.4236/msce.2022.106005

K. van der Borght, K. Alexopoulos, K. Toch, J. W. Thybaut, G. B. Marin, and V. V. Galvita, “First-principles-based simulation of an industrial ethanol dehydration reactor,” Catalysts, vol. 9, no. 11, pp. 1–21, 2019, doi: 10.3390/catal9110921. DOI: https://doi.org/10.3390/catal9110921

Carl L Yaws, “Chemical Properties Handbook:Physical, Thermodynamics, Environmental Transport, Safety & Health Related Properties for Organic.” McGraw-Hill Education, 2000, pp. 34–52.

M. Kang and A. Bhan, “Kinetics and mechanisms of alcohol dehydration pathways on alumina materials,” Catal. Sci. Technol., vol. 6, no. 17, pp. 6667–6678, 2016, doi: 10.1039/c6cy00990e. DOI: https://doi.org/10.1039/C6CY00990E

J. F. DeWilde, H. Chiang, D. A. Hickman, C. R. Ho, and A. Bhan, “Kinetics and mechanism of ethanol dehydration on γ-Al 2O3: The critical role of dimer inhibition,” ACS Catal., vol. 3, no. 4, pp. 798–807, 2013, doi: 10.1021/cs400051k. DOI: https://doi.org/10.1021/cs400051k

B. Laforce, “Upgrading of bioethanol : kinetic modeling of the catalytic conversion on zeolites” M.S. thesis, Faculty of Eng. and Archt., Ghent Univ., Belgium, 2013. [https://libstore.ugent.be/fulltxt/RUG01/002/033/374/RUG01-002033374_2013_0001_AC.pdf].

A. G. Gayubo, A. T. Aguayo, A. M. Tarrio, M. Olazar, and J. Bilbao, “Kinetic modelling for deactivation by coke deposition of a HZSM-5 zeolite catalyst in the transformation of aqueous ethanol into hydrocarbons,” Stud. Surf. Sci. Catal., vol. 139, pp. 455–462, 2001, doi: 10.1016/s0167-2991(01)80230-5. DOI: https://doi.org/10.1016/S0167-2991(01)80230-5

R. B. Demuner, J. G. Soares Santos Maia, A. R. Secchi, P. A. Melo, R. W. Do Carmo, and G. S. Gusmao, “Modeling of Catalyst Deactivation in Bioethanol Dehydration Reactor,” Ind. Eng. Chem. Res., vol. 58, no. 8, pp. 2717–2726, 2019, doi: 10.1021/acs.iecr.8b05699. DOI: https://doi.org/10.1021/acs.iecr.8b05699

C. L. Chang, A. L. Devera, and D. J. Miller, “A lumped kinetic model for dehydration of ethanol to hydrocarbons over hzsm-5,” Chem. Eng. Commun., vol. 95, no. 1, pp. 27–39, 2010, doi: 10.1080/00986449008911464. DOI: https://doi.org/10.1080/00986449008911464

B. V. R. Kuncharam and A. G. Dixon, “Multi-scale two-dimensional packed bed reactor model for industrial steam methane reforming,” Fuel Process. Technol., vol. 200, no. December 2019, p. 106314, 2020, doi: 10.1016/j.fuproc.2019.106314. DOI: https://doi.org/10.1016/j.fuproc.2019.106314

A. G. Dixon and B. Partopour, “Computational Fluid Dynamics for Fixed Bed Reactor Design,” Annu. Rev. Chem. Biomol. Eng., vol. 11, no. 1, pp. 109–130, 2020, doi: 10.1146/annurev-chembioeng-092319-075328. DOI: https://doi.org/10.1146/annurev-chembioeng-092319-075328

Published

2023-06-01

How to Cite

[1]
N. A. Aali and G. J. Hadi, “Kinetic Study of Ethanol Dehydration to Ethylene and Diethyl Ether in Catalytic Packed Bed Reactor Over ZSM-5 Catalyst ”, DJES, vol. 16, no. 2, pp. 30–49, Jun. 2023.