Green Synthesis, Characterization and Evaluation of Biological Activities of Ag-Mno Nanocomposites from Cyttaranthus Congolensis.

https://doi.org/10.24237/djes.2023.16303

Authors

  • Giresse N. Kasiama Department of Chemistry, Faculty of Sciences, University of Kinshasa, BP 190, Kinshasa XI, Democratic Republic of Congo.
  • Carlos N. Kabengele Department of Chemistry, Faculty of Sciences, University of Kinshasa, BP 190, Kinshasa XI, Democratic Republic of Congo.
  • Jason T. Kilembe Department of Chemistry, Faculty of Sciences, University of Kinshasa, BP 190, Kinshasa XI, Democratic Republic of Congo.
  • Jules M. Kitadi Faculty of Sciences, University of Kikwit, BP76, Kikwit, Democratic Republic of Congo.
  • Michel Mifundu Department of Chemistry, Faculty of Sciences, University of Kinshasa, BP 190, Kinshasa XI, Democratic Republic of Congo.
  • Jean Paul Ngbolua Department of Biology, Faculty of Sciences, University of Kinshasa, BP 190, Kinshasa XI, Democratic Republic of Congo
  • Damien S.T. Tshibangu Department of Chemistry, Faculty of Sciences, University of Kinshasa, BP 190, Kinshasa XI, Democratic Republic of Congo.
  • Dorothée D. Tshilanda Department of Chemistry, Faculty of Sciences, University of Kinshasa, BP 190, Kinshasa XI, Democratic Republic of Congo.
  • Pius T. Tshimankinda Department of Chemistry, Faculty of Sciences, University of Kinshasa, BP 190, Kinshasa XI, Democratic Republic of Congo.

Keywords:

Cyttaranthus congolensis, Silver, Manganese nanocomposites

Abstract

This study conducts biogenic synthesis of Ag-MnO nanocomposites whose aqueous extract from Cyttaranthus congolensis was used as a reducer and stabiliser. The characterisation of these particles by UV–visible spectroscopy made it possible to identify the band linked to the surface plasmon resonance located at approximately 380 nm. X-ray diffraction and fluorescence allowed determining the presence of particles of formula Ag 0.21 Mn 0.28 O having crystallised in a monoclinic system (a= 5.8517 , b = 3.4674 , c = 5.4838 and β = 107.663°). A spherical morphology was observed by scanning electron microscopy. The haemolytic activity carried out on human blood indicated that Ag-MnO nanocomposites are not toxic to human blood. Moreover, these particles showed a good antibacterial activity against gram-positive and gram-negative strains of bacteria. Promising results on the anthelmintic activity of Ag-MnO nanocomposites against several pathogenic helminths are reported in this paper. In addition to antibacterial and anthelmintic activities, Ag-MnO nanocomposites also exhibited good anti-inflammatory and antioxidant activities.

Downloads

Download data is not yet available.

References

T. Dodevska, I. Vasileva, P. Denev, D. Karashanova, B. Georgieva, D. Kovacheva, N. Yantcheva, A. Slavov, R. damascene. waste mediated synthesis of silver nanoparticles: Characteristics and application for an electrochemical sensing of hydrogen peroxide and vanillin, Materials Chemistry and Physics.; 231(2019)335-343. https://doi.org/10.1016/j.matchemphys.2019.04.030. DOI: https://doi.org/10.1016/j.matchemphys.2019.04.030

N. Ahmad, F. indéfini, M. Jabeen, Z. Ul Haq, I. Ahmad, A. Wahab, Z.U. Islam, R. Ullah, A. Bari, M.A. Mohamed, F.M. El-Demerdash, M.K. Yahya. "Green Manufacture of silver nanoparticles using the aqueous extract of Euphorbia serpens Kunth, their characterization and the study of its antioxidant, antimicrobial, insecticidal and cytotoxic activities in vitro", BioMed Research International. 5562849 (2022) 11. https://doi.org/10.1155/2022/5562849. DOI: https://doi.org/10.1155/2022/5562849

M. Ovais, A.T. Khalil, A. Raza, M.A. Khan, I. Ahmad, N.U. Islam, M. Saravanan, M.F. Ubaid, M. Ali, Z.K. Shinwari. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine (Lond). 11 (2016) 3157-3177. doi: 10.2217/nnm-2016-0279. DOI: https://doi.org/10.2217/nnm-2016-0279

Z. Fereshteh, M.R.L. Estarki, R.S. Razavi, M. Taheran. Template synthesis of zinc oxide nanoparticles entrapped in the zeolite Y matrix and applying them for thermal control paint, Materials Science in Semiconductor Processing. 16 (2013) 547-553. https://doi.org/10.1016/j.mssp.2012.08.005. DOI: https://doi.org/10.1016/j.mssp.2012.08.005

Z.U.H. Khan, A. Khan, Y. Chen, N.S. Shah, N. Muhammad, A.U. Khan, K. Tahir, F.U. Khan, B. Murtaza, S.U. Hassan, S.A. Qaisrani, P. Wan. Biomedical applications of green synthesized Nobel metal nanoparticles, Journal of Photochemistry and Photobiology B: Biology. 173 (2017) 150-164. https://doi.org/10.1016/j.jphotobiol.2017.05.034. DOI: https://doi.org/10.1016/j.jphotobiol.2017.05.034

M. Rafique, I. Sadaf, M.S. Rafique, M.B. Tahir. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol. 45 (2017) 1272-1291. doi: 10.1080/21691401.2016.1241792. DOI: https://doi.org/10.1080/21691401.2016.1241792

A. Happy, M. Soumya, S.V. Kumar, S. Rajeshkumar, R.D. Sheba, T. Lakshmi, V.D. Nallaswamy. Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli, Biochemistry and Biophysics Reports. 17 (2019) 208-211. https://doi.org/10.1016/j.bbrep.2019.01.002. DOI: https://doi.org/10.1016/j.bbrep.2019.01.002

M. Herlekar, S. Barve, R. Kumar. "Synthèse verte médiée par les plantes de nanoparticules de fer", Journal of Nanoparticles. 9 (2014) 140614. https://doi.org/10.1155/2014/140614 DOI: https://doi.org/10.1155/2014/140614

S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram. A review on plants extracts mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 7 (2016) 17-28. doi: 10.1016/j.jare.2015.02.007. DOI: https://doi.org/10.1016/j.jare.2015.02.007

G.K. Prashanth, P.A. Prashanth, U. Bora, M. Gadewar, B.M. Nagabhushana, S. Ananda, G.M. Krishnaiah, H.M. Sathyananda. In vitro antibacterial and cytotoxicity studies of ZnO nanopowders prepared by combustion assisted facile green synthesis, Karbala International Journal of Modern Science.1(2015) 67-77. https://doi.org/10.1016/j.kijoms.2015.10.007. DOI: https://doi.org/10.1016/j.kijoms.2015.10.007

M. Harshiny, M. Matheswaran, G. Arthanareeswaran, S. Kumaran, S. Rajasree. Enhancement of antibacterial properties of silver nanoparticles–ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis, Ecotoxicology and Environmental Safety. 121(2015)135-141. https://doi.org/10.1016/j.ecoenv.2015.04.041. DOI: https://doi.org/10.1016/j.ecoenv.2015.04.041

D.I. Pantelis, P.N. Karakizis, N.M. Daniolos, C.A. Charitidis, E.P. Koumoulos and D.A. Dragatogiannis. Microstructural study and mechanical properties of dissimilar AA5083-H111 and AA6082-T6 friction welds reinforced with SiC nanoparticles, materials and fabrication processes. 31 (2016) 264-274, DOI: 10.1080/10426914.2015.1019095 DOI: https://doi.org/10.1080/10426914.2015.1019095

T. Zohra, A.T. Khalil, F. Saeed, B. Latif, M. Salman, A. Ikram, M. Ayaz, H.C.A. Murthy. "Green Nano-Biotechnology: A New Sustainable Paradigm to Control Dengue Infection", Bioinorganic Chemistry and Applications. 3994340 (2022) 21. https://doi.org/10.1155/2022/3994340 DOI: https://doi.org/10.1155/2022/3994340

C.E. Lemaoui, H. Layaida, A. Badi, N. Foudi. Stratégies actuelles de lutte contre la résistance aux antibiotiques, Journal des Anti-infectieux. 19(2017)12-19. https://doi.org/10.1016/j.antinf.2017.01.003. DOI: https://doi.org/10.1016/j.antinf.2017.01.003

D. Floresyona. Synthesis of Metal and Conjugated Polymer Nanostructures in Hexagonal Mesophases for Application in Fuel Cells and photocatalysis. Polymers. Paris Saclay University (COmUE). (2017). English. ⟨NNT: 2017SACLS206⟩. ⟨tel-01865813⟩

J. Sourice. Synthesis of core-shell silicon-carbon nanocomposites by double-stage laser pyrolysis: application to the anode of lithium-ion batteries. Materials. Paris Sud University - Paris XI. (2015). French. ⟨NNT: 2015PA112166⟩. ⟨tel-01302856⟩

N.M. El Fatah. Fabrication and characterization of Ag@AgCl nanocomposite thin films for photovoltaic applications. (2021). Doctoral thesis. http://hdl.handle.net/123456789/3350

J.G. Mattei. Structure and chemical order in bimetallic nanoparticles: case of the Fe-Bi immiscible system. Materials Science [cond-mat.mtrl-sci]. Paul Sabatier University (Toulouse 3). (2012). French. ⟨NNT: 2012TOU30302⟩. ⟨tel-01937619⟩.

E.M. Ngoyi, D.D. Tshilanda, J.T. Kilembe, E.M. Lengbiye, C.N. Kabengele, G.N. Kasiama, D.T.S. Tshibangu, D.O. Opota, K. Ngbolua, P.T. Mpiana. Phytochemical profile, antioxidant and anthelmintic activities of O. gratissimum leaves collected in Kinshasa (D.R. Congo). Discovery Phytomedicine.; 7(2020) 171-176. DOI: 10.15562/phytomedicine. DOI: https://doi.org/10.15562/phytomedicine.2020.145

G.N. Kasiama, A. Ikey, C.N. Kabengele, J.T. Kilembe, E.N. Matshimba, J.M. Bete, P.B. Bahati, C.L. Inkoto, P.K. Mutwale, K.N. Ngbolua, D.S.T. Tshibangu, D.D. Tshilanda and P.T. Mpiana*. Anthelmintic activity, antioxidant activity, phytochemical profile and microscopic features of Cassia alata collected in the Democratic Republic of Congo (DR Congo). 37(2022) 28-36; Article no.ARRB .87349. DOI: 10.9734/ARRB/2022/v37i630513 DOI: https://doi.org/10.9734/arrb/2022/v37i630513

K. Ngombe, F. Bukatuta, M. Kapepula, B. Moni, K. Makengo, L. Pambu, N. Bongo, M. Mbombo, M. Musuyu, U. Maloueki, N. Koto-Te-Nyiwa and F. Mbemba. Bioactivity and Nutritional values of some Dioscorea species traditionally used as Medicinal foods in Bandundu, DR congo, EJMP. 14(2016) 1-11, DOI: 10.9734/EJMP/2016/25124 DOI: https://doi.org/10.9734/EJMP/2016/25124

C.N. Kabengele, G.N .Kasiama, E.M. Ngoyi, C.L. Inkoto, J.M. Bete, P.B. Babady, D.S.T. Tshibangu, D.D. Tshilanda, H.M. Kalele, P.T. Mpiana, K. Ngbolua. Biogenic synthesis, characterization and effects of Mn-CuO composite nanocatalysts on Methylene blue photodegradation and Human erythrocytes[J]. AIMS Materials Science. 10(2023)356-369. doi: 10.3934/matersci.2023019 DOI: https://doi.org/10.3934/matersci.2023019

S. Hatakeyama, Y. Ohama, M. Okazaki, Y. Nukui & K. Moriya. Test de sensibilité aux antimicrobiens de mycobactéries à croissance rapide isolées au Japon. BMC Infect Dis. 17 (2017).197. https://doi.org/10.1186/s12879-017-2298-8. DOI: https://doi.org/10.1186/s12879-017-2298-8

C.N. Kabengele, E. M.Ngoyi, G.N. Kasiama, J.T. Kilembe, A. Matondo, C.L. Inkoto, E.M. Lengbiye, C.M. Mbadiko, J.J.D. Amogu, G.N. Bongo … P.T. Mpiana. Antihelminthic Activity, Phytochemical Profile and Microscopic Features of Ocimum basilicum Collected in DR Congo. AJOB. 10(2020) 42-50. DOI: 10.9734/AJOB/2020/v10i330110 DOI: https://doi.org/10.9734/ajob/2020/v10i330110

K.C. Sree, N. Yasmin, R.M. Hussain and M. Babuselvam. Invitro anti-inflammatory and anti-arthritic property of rhizopora mucronata leaves. International Journal of Pharma Sciences and Research (IJPSR). Flight.; 6 (2015) 3. ISSN: 0975-9492.

A. Marina, D. Jeffrey, W. Barry, B. Jennifer, K. Anil and E. Scott. Method for Analysis of Nanoparticle Hemolytic Properties In Vitro. Nano Lett. 8(2009) 2180–2187. doi:10.1021/nl0805615. DOI: https://doi.org/10.1021/nl0805615

J.Y. Song et B.S. Kim. Synthèse biologique rapide de nanoparticules d'argent à l'aide d'extraits de feuilles de plantes. Bioprocess Biosyst Eng. 32(2009)79–84. https://doi.org/10.1007/s00449-008-0224-6 DOI: https://doi.org/10.1007/s00449-008-0224-6

S. Iravani. "Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects", International Scholarly Research Notices. 18(2014) 359316. https://doi.org/10.1155/2014/359316 DOI: https://doi.org/10.1155/2014/359316

M. Souri, V. Hoseinpour, N. Ghaemi and A. Shakeri. Optimisation de la procédure pour la synthèse verte de nanoparticules de dioxyde de manganèse par l'extrait de feuille de Yucca gloriosa. Int Nano Lett. 9(2019) 73–81. https://doi.org/10.1007/s40089-018-0257-z DOI: https://doi.org/10.1007/s40089-018-0257-z

A. Khataee, M. Sheydaei, A. Hassani, M. Taseidifar and S. Karaca. Sonocatalytic removal of an organic dye using TiO2/montmoril lonite nanocomposite. Ultrasound. Sonochem. 22(2015)404–411. https://doi.org/10.1016/j.ultsonch.2014.07.002. DOI: https://doi.org/10.1016/j.ultsonch.2014.07.002

Z. Alhalili. Green synthesis of copper oxide nanoparticles CuO NPs from Eucalyptus Globoulus leaf extract: Adsorption and design of experiments, Arabian Journal of Chemistry. 15(2022)1878-5352. https://doi.org/10.1016/j.arabjc.2022.103739. DOI: https://doi.org/10.1016/j.arabjc.2022.103739

A. Nawaz, S. Bano, M. Yasir, A. Wadood and M.A. Rehman. Ag and Mn-doped mesoporous bioactive glass nanoparticles incorporated into the chitosan/ gelatin coatings deposited on PEEK/bioactive glass layers for favorable osteogenic differentiation and antibacterial activity. Mater. Adv. 1(2020) 1273-1284. DOI: 10.1039/d0ma00325e. DOI: https://doi.org/10.1039/D0MA00325E

H. Xu. Elaboration of laccase T. cross-linked ultraporous aluminas for Remazol Brilliant Blue R removal. Material chemistry. Université Paris-Nord - Paris XIII. (2021) English. ⟨NNT: 2021PA131076⟩. ⟨tel-03886067⟩

M.H. Yap, K.L. Fow, G.Z. Chen. Synthesis and applications of MOF-derived porous nanostructures, Green Energy & Environment.; 2(2017)218-245. https://doi.org/10.1016/j.gee.2017.05.003. DOI: https://doi.org/10.1016/j.gee.2017.05.003

M.H. El-Rafie and M.A. Hamed. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species. Adv. Nat. Sci: Nanosci. Nanotechnology.; 5(2014)035008. DOI 10.1088/2043-6262/5/3/035008. DOI: https://doi.org/10.1088/2043-6262/5/3/035008

J. Aditya, A. Roy, S. Rajeshkumar. Anti-inflammatory activity of silver nanoparticles synthesized using cumin oil. Research Journal of Pharmacy and Technology.); 12(2019)2790-2793; DOI: 10.5958/0974-360X.2019.00469.4 DOI: https://doi.org/10.5958/0974-360X.2019.00469.4

P. Singh, S. Ahn, J.P. Kang, S. Veronika, Y. Huo, H. Singh, M. Chokkaligam, F.M. Agamy, V.C. Aceituno, Y.J. Kim, D.C. Yang. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artif Cells Nanomed Biotechnol. 46(2018)2022-2032. doi: 10.1080/21691401.2017.1408117. DOI: https://doi.org/10.1080/21691401.2017.1408117

Published

2023-09-03

How to Cite

[1]
G. N. Kasiama, “ Characterization and Evaluation of Biological Activities of Ag-Mno Nanocomposites from Cyttaranthus Congolensis”., DJES, vol. 16, no. 3, pp. 24–36, Sep. 2023.