Prediction the Experimental Data of CO2 and H2S Solubility in Ionic Liquids Using PR-EoS with Three Different Mixing Rules

https://doi.org/10.24237/djes.2023.16209

Authors

  • Shagull M. Ali Department of Chemical Engineering, Soran University, Erbil, Iraq
  • Arkan J. Hadi Department of Chemical Engineering, Soran University, Erbil, Iraq
  • Shahla Z. Ahmad Department of Chemical Engineering, Soran University, Erbil, Iraq

Keywords:

Solubility, Ionic liquids, PR-EoS, Modified van der waal, Quadratic mixing rule, Wong sandler

Abstract

In this study, Peng-Robinson equations of state associated with three different mixing rules used to predict the experimental solubility data of two acid gases, carbon dioxide and hydrogen sulfide in seven ionic liquids. The solubility data were obtained from different literature in pressure range (0.119 – 65.2) bar and verity range of temperatures (298.2 – 353) K. Mixing rules, used the modified Van der Waal (MR1), the Quadratic (MR2) and the Wong Sandler (MR3). The ionic liquids critical properties were correlated by modified Lydersen-Joback-Reid technique. The Average Absolute Relative Deviation (%AARD) was applied to compare the experimental data and that obtained from the model. The evaluated critical properties give a very close result with the literature. The mathematical model in almost systems using the three mixing rule gives good agreement with experimental data only in H2S - ILs systems gives very high deviation from the experimental data when use MR3. Quadratic mixing rule (MR2) was the best comparing with MR1 and MR3, give the lowest range %AARD 0.9 to 21.

 

Downloads

Download data is not yet available.

References

J. Haider et al., “Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects,” Renewable and Sustainable Energy Reviews, vol. 123. Elsevier Ltd, May 01, 2020. doi: 10.1016/j.rser.2020.109771. DOI: https://doi.org/10.1016/j.rser.2020.109771

S. M. Alardhi, T. Al-Jadir, A. M. Hasan, A. A. Jaber, and L. M. Al Saedi, “Design of Artificial Neural Network for Prediction of Hydrogen Sulfide and Carbon Dioxide Concentrations in a Natural Gas Sweetening Plant,” Ecol. Eng. Environ. Technol., vol. 24, no. 2, pp. 55–66, 2023, doi: 10.12912/27197050/157092. DOI: https://doi.org/10.12912/27197050/157092

M. M. Taib and T. Murugesan, “Solubilities of CO 2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600kPa,” Chem. Eng. J., vol. 181–182, pp. 56–62, Feb. 2012, doi: 10.1016/j.cej.2011.09.048. DOI: https://doi.org/10.1016/j.cej.2011.09.048

A. Qayyum, U. Ali, and N. Ramzan, “Acid gas removal techniques for syngas, natural gas, and biogas clean up–a review,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–24, 2020, doi: 10.1080/15567036.2020.1800866. DOI: https://doi.org/10.1080/15567036.2020.1800866

F. Li, A. Laaksonen, X. Zhang, and X. Ji, “Rotten Eggs Revaluated: Ionic Liquids and Deep Eutectic Solvents for Removal and Utilization of Hydrogen Sulfide,” Ind. Eng. Chem. Res., vol. 61, no. 7, pp. 2643–2671, 2022, doi: 10.1021/acs.iecr.1c04142. DOI: https://doi.org/10.1021/acs.iecr.1c04142

M. Shokouhi, M. Adibi, A. H. Jalili, M. Hosseini-Jenab, and A. Mehdizadeh, “Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-Hydroxyethyl)-3-methylimidazolium tetrafluoroborate,” J. Chem. Eng. Data, vol. 55, no. 4, pp. 1663–1668, Apr. 2010, doi: 10.1021/je900716q. DOI: https://doi.org/10.1021/je900716q

M. Inês, J. Manuel, and J. Queimada, ” MODELLING THE CARBON DIOXIDE SOLUBILITY WITH CPA EOS ”. thesis (MA), 2020, Universidade de Aveiro 2009

A. C. D. Freitas, L. P. Cunico, M. Aznar, and R. Guirardello, “Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state,” in Brazilian Journal of Chemical Engineering, Jan. 2013, vol. 30, no. 1, pp. 63–73. doi: 10.1590/S0104-66322013000100008. DOI: https://doi.org/10.1590/S0104-66322013000100008

Z. Lei, C. Dai, and B. Chen, “Gas solubility in ionic liquids,” Chemical Reviews, vol. 114, no. 2. pp. 1289–1326, Jan. 22, 2014. doi: 10.1021/cr300497a. DOI: https://doi.org/10.1021/cr300497a

H. Sakhaeinia, A. H. Jalili, V. Taghikhani, and A. A. Safekordi, “Solubility of H2S in ionic liquids 1-Ethyl-3-methylimidazolium Hexafluorophosphate ([emim][PF6]) and 1-Ethyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide ([emim][Tf2N]),” J. Chem. Eng. Data, vol. 55, no. 12, pp. 5839–5845, Dec. 2010, doi: 10.1021/je100794k. DOI: https://doi.org/10.1021/je100794k

Á. Pérez-Salado Kamps and G. Maurer, “Comment on ‘solubility of CO2, H2S, and their mixture in the ionic liquid 1-Octyl-3-methylimidazolium Bis(trifluoromethyl) sulfonylimide,’” J. Phys. Chem. B, vol. 116, no. 50, pp. 14731–14733, 2012, doi: 10.1021/jp305719w. DOI: https://doi.org/10.1021/jp305719w

A. Kheiri, A. Afsharpour, and M. B. Z. Talavaki, “Modeling of acid gases solubility in ionic liquid [BMIM][MeSO4] using CPA EoS,” Pet. Sci. Technol., vol. 36, no. 4, pp. 319–325, Feb. 2018, doi: 10.1080/10916466.2017.1421974. DOI: https://doi.org/10.1080/10916466.2017.1421974

S. O. Nwosu, J. C. Schleicher, and A. M. Scurto, “High-pressure phase equilibria for the synthesis of ionic liquids in compressed CO2 for 1-hexyl-3-methylimidazolium bromide with 1-bromohexane and 1-methylimidazole,” J. Supercrit. Fluids, vol. 51, no. 1, pp. 1–9, Nov. 2009, doi: 10.1016/j.supflu.2009.07.006. DOI: https://doi.org/10.1016/j.supflu.2009.07.006

M. Yazdizadeh, F. Rahmani, and A. A. Forghani, “Thermodynamic modeling of CO2 solubility in ionic liquid ([Cn-mim] [Tf2N]; n=2, 4, 6, 8) with using Wong-Sandler mixing rule, Peng-Rabinson equation of state (EOS) and differential evolution (DE) method,” Korean J. Chem. Eng., vol. 28, no. 1, pp. 246–251, 2011, doi: 10.1007/s11814-010-0345-x. DOI: https://doi.org/10.1007/s11814-010-0345-x

A. Moghanjoghi, “CO2 Capture Using Ionic Liquids: Thermodynamic Modeling and Molecular Dynamics Simulation.” Memorial University of Newfoundland,thesis (phd),2020.

J. FIuidMech et al., “A New Two-Constant Equation of State,” 1973.

Y. Xie, CO 2 Separation with Ionic Liquids. Luleå University of Technology, thesis (phd), 2017.

E. Pérez et al., “Solubility of CO2 in three cellulose-dissolving ionic liquids,” AIChE J., vol. 66, no. 7, pp. 1–13, 2020, doi: 10.1002/aic.16228. DOI: https://doi.org/10.1002/aic.16228

D. Nath and A. Henni, “Solubility of Carbon Dioxide (CO2) in Two [Tf2N] Based Ionic Liquids at (303.15, 323.15, and 343.15) K and Pressures up to 12 Bar,” SSRN Electron. J., no. October, 2020, doi: 10.2139/ssrn.3366060. DOI: https://doi.org/10.2139/ssrn.3366060

M. Safavi, C. Ghotbi, V. Taghikhani, A. H. Jalili, and A. Mehdizadeh, “Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modelling,” J. Chem. Thermodyn., vol. 65, pp. 220–232, 2013, doi: 10.1016/j.jct.2013.05.038. DOI: https://doi.org/10.1016/j.jct.2013.05.038

Y. Xie, D. G. Raut, R. Samikannu, J. P. Mikkola, and X. Ji, “A Thermodynamic Study of Aqueous 1-Allyl-3-Methylimidazolium Formate Ionic Liquid as a Tailored Sorbent for Carbon Dioxide Separation,” Energy Technol., vol. 5, no. 8, pp. 1464–1471, Aug. 2017, doi: 10.1002/ente.201600742. DOI: https://doi.org/10.1002/ente.201600742

Published

2023-06-01

How to Cite

[1]
S. M. Ali, A. J. Hadi, and S. Z. Ahmad, “Prediction the Experimental Data of CO2 and H2S Solubility in Ionic Liquids Using PR-EoS with Three Different Mixing Rules ”, DJES, vol. 16, no. 2, pp. 97–112, Jun. 2023.