Effect of Adding Heat Exchanger on the Refrigeration System Performance

https://doi.org/10.24237/djes.2023.16201

Authors

  • Maytham Neamah Jasim Department of Mechanical Engineering, Altinbaş University, Istanbul 34217, Turkey
  • Yaser Alaiwi Department of Mechanical Engineering, Altinbaş University, Istanbul 34217, Turkey

Keywords:

Shell and tube, Coefficient of performance (COP), Engineering Equation Solver (EES), Condenser, Subcooling

Abstract

Internal or liquid-suction heat exchangers are used with the main goal of ensuring the entry of refrigerant in the liquid phase to the expansion device. The greatest COP gain is primarily determined by the thermodynamic parameters linked to the relative increase in refrigerating effect. Large latent heat of vaporisation refrigerants often does not gain as much from condenser subcooling in support of a cooling system. Computational fluid dynamics (CFD) is used to study the effects of the turbulence model, which requires the solution of two transport equations. A technique was developed to study the thermal effect on the heat exchange process between two fluids. To observe the temperature effect on 17 tubes, the diameter was altered twice, first to 6 mm and then to 4 mm. The flow procedure transpired in one direction, and the tube housing the tubes had a diameter of 50 mm. In the best-case scenario, the pipe diameter is 4 mm, and the heat exchanger is 300 mm in length. The results indicate an improved enthalpy of 423.2 h [KJ/M] in the simulated cases. The length of the heat exchanger greatly affects the values of the exit temperatures and the temperature difference. For a length of 225 mm, the temperature reached 15.73 °C, and for 300 mm, it reached 13.847 °C. The significant reduction in temperatures increases the coefficient in the refrigeration cycle. A high coefficient of cooling in the heat exchanger appears when the length is 300 mm compared with other lengths.

Downloads

Download data is not yet available.

References

Sumeru, T.P. Pramudantoro, F.N. Ani, H. Nasution, Enhancing Air Conditioning Performance Using TiO2 Nanoparticles in Compressor Lubricant, Adv. Mater. Res. 1125 (2015) 556–560. https://doi.org/10.4028/www.scientific.net/amr.1125.556. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1125.556

R.I. Tritjahjono, K. Sumeru, A. Setyawan, M.F. Sukri, Evaluation of Subcooling with liquid-suction heat exchanger on the performance of air conditioning system using R22/R410A/R290/R32 as refrigerants, J. Adv. Res. Fluid Mech. Therm. Sci. 55 (2019) 1–11.

K. Sumeru, C. Sunardi, M.F. Sukri, Effect of compressor discharge cooling using condensate on performance of residential air conditioning system, AIP Conf. Proc. 2001 (2018). https://doi.org/10.1063/1.5049962. DOI: https://doi.org/10.1063/1.5049962

S. Choi, U. Han, H. Cho, H. Lee, Review: Recent advances in household refrigerator cycle technologies, Appl. Therm. Eng. 132 (2018) 560–574. https://doi.org/10.1016/j.applthermaleng.2017.12.133. DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.133

V. Pérez-García, J.M. Belman-Flores, J.L. Rodríguez-Muñoz, V.H. Rangel-Hernández, A. Gallegos-Muñoz, Second law analysis of a mobile air conditioning system with internal heat exchanger using low GWP refrigerants, Entropy. 19 (2017). https://doi.org/10.3390/e19040175. DOI: https://doi.org/10.3390/e19040175

S. Qian, J. Yu, G. Yan, A review of regenerative heat exchange methods for various cooling technologies, Renew. Sustain. Energy Rev. 69 (2017) 535–550. https://doi.org/10.1016/j.rser.2016.11.180. DOI: https://doi.org/10.1016/j.rser.2016.11.180

J.F. Ituna-Yudonago, J.M. Belman-Flores, F. Elizalde-Blancas, O. García-Valladares, Numerical investigation of CO2 behavior in the internal heat exchanger under variable boundary conditions of the transcritical refrigeration system, Appl. Therm. Eng. 115 (2017) 1063–1078. https://doi.org/10.1016/j.applthermaleng.2017.01.042. DOI: https://doi.org/10.1016/j.applthermaleng.2017.01.042

A. Mota-Babiloni, J. Navarro-Esbrí, J.M. Mendoza-Miranda, B. Peris, Experimental evaluation of system modifications to increase R1234ze(E) cooling capacity, Appl. Therm. Eng. 111 (2017) 786–792. https://doi.org/10.1016/j.applthermaleng.2016.09.175. DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.175

J.M. Belman-Flores, A.P. Rodríguez-Muñoz, C.G. Pérez-Reguera, A. Mota-Babiloni, Étude expérimentale sur le remplacement immédiat du R134A par du R1234yf dans un réfrigérateur domestique, Int. J. Refrig. 81 (2017) 1–11. https://doi.org/10.1016/j.ijrefrig.2017.05.003. DOI: https://doi.org/10.1016/j.ijrefrig.2017.05.003

Prayudi, R. Nurhasanah, R.A. Diantari, The effect the effectiveness of the liquid suction heat exchanger to performance of cold storage with refrigerant R22, R404A and R290/R600a, AIP Conf. Proc. 1788 (2017). https://doi.org/10.1063/1.4968320. DOI: https://doi.org/10.1063/1.4968320

H. Cho, C. Park, Experimental investigation of performance and exergy analysis of automotive air conditioning systems using refrigerant R1234yf at various compressor speeds, Appl. Therm. Eng. 101 (2016) 30–37. https://doi.org/10.1016/j.applthermaleng.2016.01.153. DOI: https://doi.org/10.1016/j.applthermaleng.2016.01.153

A. Mota-Babiloni, J. Navarro-Esbrí, F. Molés, Á.B. Cervera, B. Peris, G. Verdú, A review of refrigerant R1234ze(E) recent investigations, Appl. Therm. Eng. 95 (2016) 211–222. https://doi.org/10.1016/j.applthermaleng.2015.09.055. DOI: https://doi.org/10.1016/j.applthermaleng.2015.09.055

G. Pottker, P. Hrnjak, Effect of the condenser subcooling on the performance of vapor compression systems, Int. J. Refrig. 50 (2015) 156–164. https://doi.org/10.1016/j.ijrefrig.2014.11.003. DOI: https://doi.org/10.1016/j.ijrefrig.2014.11.003

M.F. Sukri, M.N. Musa, M.Y. Senawi, H. Nasution, Achieving a better energy-efficient automotive air-conditioning system: a review of potential technologies and strategies for vapor compression refrigeration cycle, Energy Effic. 8 (2015) 1201–1229. https://doi.org/10.1007/s12053-015-9389-4. DOI: https://doi.org/10.1007/s12053-015-9389-4

M. Ramadan, M.G. El Rab, M. Khaled, Parametric analysis of air-water heat recovery concept applied to HVAC systems: Effect of mass flow rates, Case Stud. Therm. Eng. 6 (2015) 61–68. https://doi.org/10.1016/j.csite.2015.06.001. DOI: https://doi.org/10.1016/j.csite.2015.06.001

Z. Qi, Performance improvement potentials of R1234yf mobile air conditioning system, Int. J. Refrig. 58 (2015) 35–40. https://doi.org/10.1016/j.ijrefrig.2015.03.019. DOI: https://doi.org/10.1016/j.ijrefrig.2015.03.019

M. Xing, R. Wang, J. Yu, Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors, Int. J. Refrig. 40 (2014) 398–403. https://doi.org/10.1016/j.ijrefrig.2013.12.004. DOI: https://doi.org/10.1016/j.ijrefrig.2013.12.004

K. Sumeru, S. Sulaimon, H. Nasution, F.N. Ani, Numerical and experimental study of an ejector as an expansion device in split-type air conditioner for energy savings, Energy Build. 79 (2014) 98–105.https://doi.org/10.1016/j.enbuild.2014.04.043. DOI: https://doi.org/10.1016/j.enbuild.2014.04.043

A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán, F. Molés, B. Peris, Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements, Appl. Therm. Eng. 71 (2014) 259–265. https://doi.org/10.1016/j.applthermaleng.2014.06.056. DOI: https://doi.org/10.1016/j.applthermaleng.2014.06.056

K. Sumeru, H. Nasution, F.N. Ani, Numerical study of ejector as an expansion device in split-type air conditioner, Appl. Mech. Mater. 388 (2013) 101–105. https://doi.org/10.4028/www.scientific.net/AMM.388.101. DOI: https://doi.org/10.4028/www.scientific.net/AMM.388.101

Krishna, Akshay Bharadwaj, et al. “Technoeconomic Optimization of Superalloy Supercritical CO2 Microtube Shell-And-Tube-Heat Exchangers.” Applied Thermal Engineering, vol. 220, Feb. 2023, p. 119578, doi:https://doi.org/10.1016/j.applthermaleng.2022.119578. DOI: https://doi.org/10.1016/j.applthermaleng.2022.119578

Khan, Abdullah, et al. “Numerical and Experimental Analysis of Shell and Tube Heat Exchanger with Round and Hexagonal Tubes.” Energies, vol. 16, no. 2, Jan. 2023, p. 880, doi:https://doi.org/10.3390/en16020880. DOI: https://doi.org/10.3390/en16020880

“Ansys | Engineering Simulation Software.” www.ansys.com, ansys.com.

Published

2023-06-01

How to Cite

[1]
M. N. Jasim and Y. Alaiwi, “Effect of Adding Heat Exchanger on the Refrigeration System Performance”, DJES, vol. 16, no. 2, pp. 1–15, Jun. 2023.