Synthesis and Diagnosis of New Heterocyclic Compound as Corrosion Inhibitor for Mild Steel in Acidic Solution
Keywords:
Steel, HCl, Corrosion, inhibitor, Quantum chemicalAbstract
The detrimental impact of corrosion on industrial metals, especially mild steel under acidic conditions, underscores the need for the development of effective corrosion inhibitors. In the present work, a new anticorrosion chemical named 2-(2-anthracen-9-yl)-3-chloro-4-oxoazetidin-1-y1)-1- methyl-1H-imidazol-4(5H)-one (AOMI) was synthesized, identified, and assessed for the protection of low-carbon steel corrosion in one molar hydrochloric acid solution. Experimental procedures included weight loss, electrochemical, surface morphological, FTIR, 1H NMR, and hardness measurements, while computational analyses involved quantum chemical calculations. The investigation revealed that AOMI significantly reduced corrosion rates with maximum inhibition efficiencies of 90% at 80 ppm and 60 oC. A spontaneous monolayer was formed on the metal surface. The adsorption of this layer was according to the Langmuir isotherm. SEM and AFM images showed the presence of the protective layer. The experimental results were validated by computational simulations, which showed that bonds were formed with the mild steel surface.
Downloads
References
Yadav, M., Sarkar, T. K., & Purkait, T. (2015). Amino acid compounds as eco-friendly corrosion inhibitor for N80 steel in HCl solution: Electrochemical and theoretical approaches. Journal of Molecular Liquids, 212, 731-738.
Mansour, A. A., Hejjaj, C., Thari, F. Z., Karrouchi, K., Bazzi, L., Bougrin, K., ... & Salghi, R. (2023). Interfacial phenomena and surface protection of N80-carbon steel in acidic environments using thiazolidinediones: An experimental and computational analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 677, 132415.
Singh, A., Ansari, K. R., Quraishi, M. A., Lgaz, H., & Lin, Y. (2018). Synthesis and investigation of pyran derivatives as acidizing corrosion inhibitors for N80 steel in hydrochloric acid: Theoretical and experimental approaches. Journal of Alloys and Compounds, 762, 347-362.
Ansari, K. R., Quraishi, M. A., & Singh, A. (2015). Pyridine derivatives as corrosion inhibitors for N80 steel in 15% HCl: Electrochemical, surface and quantum chemical studies. Measurement, 76, 136-147.
Singh, A., Ansari, K. R., Ali, I. H., Lin, Y., Murmu, M., & Banerjee, P. (2023). Evaluation of corrosion mitigation properties of pyridinium-based ionic liquids on carbon steel in 15% HCl under the hydrodynamic condition: Experimental, surface, and computational approaches. Journal of Molecular Liquids, 376, 121408.
Rashid, K. H., Khadom, A. A., & Guo, L. (2024). The inhibition effect of 1, 3-diazole glyoxaline on corrosion of API 5L X52 pipeline steel in oilfield produced water under sweet corrosive conditions. Results in Chemistry, 7, 101528.
Rahimi, A., Abdouss, M., Farhadian, A., Guo, L., Kaya, S., & Neshati, J. (2022). Enhancement corrosion resistance of mild steel in 15% HCl solution by a novel bio-based polyurethane for oil well acidizing. Journal of Industrial and Engineering Chemistry, 113, 332-347.
Yadav, M., Sharma, U., & Yadav, P. N. (2013). Isatin compounds as corrosion inhibitors for N80 steel in 15% HCl. Egyptian Journal of Petroleum, 22(3), 335-344.
Mehta, R. K., Yadav, M., & Obot, I. B. (2022). Electrochemical and computational investigation of adsorption and corrosion inhibition behaviour of 2-aminobenzohydrazide derivatives at mild steel surface in 15% HCl. Materials Chemistry and Physics, 290, 126666.
Rahimi, A., Farhadian, A., Berisha, A., Shaabani, A., Varfolomeev, M. A., Mehmeti, V., ... & Djimasbe, R. (2022). Novel sucrose derivative as a thermally stable inhibitor for mild steel corrosion in 15% HCl medium: An experimental and computational study. Chemical Engineering Journal, 446, 136938.
Jasim, Z. I., Rashid, K. H., AL-Azawi, K. F., & Khadom, A. A. (2024). Optimization of the corrosion inhibition performance of novel oxadiazole thione-based Schiff base for mild steel in HCl media using Doehlert experimental design. Inorganic Chemistry Communications, 160, 111911.
Al-azawi, K. F., Ahmed, Z. W., Ali, E. H., Khadom, A. A., Abrahim, H. H., & Rashid, K. H. (2023). Synthesis and characterization of (E)-4-(((4-(5-mercapto-1, 3, 4-oxadiazol-2-yl) phenyl) amino) methyl)-2-methoxyphenol as a novel corrosion inhibitor for mild-steel in acidic medium. Results in Chemistry, 5, 100975.
Zadeh, M. K., Yeganeh, M., Shoushtari, M. T., & Esmaeilkhanian, A. (2021). Corrosion performance of polypyrrole-coated metals: A review of perspectives and recent advances. Synthetic Metals, 274, 116723.
Loganathan, K. T., Thimmakondu, V. S., Nagarajan, S., & Natarajan, R. (2021). Corrosion inhibitive evaluation and DFT studies of 2-(Furan-2-yl)-4, 5-diphenyl-1H-imidazole on mild steel at 1.0 M HCl. Journal of the Indian Chemical Society, 98(9), 100121.
Senthilkumar, G., Umarani, C., & Ramachandran, A. (2021). Investigation on corrosion inhibition effect of N-[4-(1, 3-benzo [d] thiazol-2-ylcarbamoyl) phenyl] quinoline-6-carboxamide as a novel organic inhibitor on mild steel in 1N HCl at different temperatures: experimental and theoretical study. Journal of the Indian Chemical Society, 98(6), 100079.
Salman, M., Ansari, K. R., Haque, J., Srivastava, V., Quraishi, M. A., & Mazumder, M. A. (2020). Ultrasound‐assisted synthesis of substituted triazines and their corrosion inhibition behavior on N80 steel/acid interface. Journal of Heterocyclic Chemistry, 57(5), 2157-2172.
Verma, C., Olasunkanmi, L. O., Ebenso, E. E., & Quraishi, M. A. (2018). Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: a review. Journal of Molecular Liquids, 251, 100-118.
Gökce, H., Şen, F., Sert, Y., Abdel-Wahab, B. F., Kariuki, B. M., & El-Hiti, G. A. (2022). Quantum computational investigation of (E)-1-(4-methoxyphenyl)-5-methyl-N′-(3-phenoxybenzylidene)-1 H-1, 2, 3-triazole-4-carbohydrazide. Molecules, 27(7), 2193.
Koparır, P., Omer, R., Karatepe, M., & Ahmed, L. (2020). Synthesis, Characterization, and theoretical inhibitor study for (1E, 1'E)-2, 2'-thiobis (1-(3-mesityl-3-methylcyclobutyl) ethan-1-one) dioxime. El-Cezeri, 8(3), 1495-1510.
Tehrani, M. E. H. N., Ghahremani, P., Ramezanzadeh, M., Bahlakeh, G., & Ramezanzadeh, B. (2021). Theoretical and experimental assessment of a green corrosion inhibitor extracted from Malva sylvestris. Journal of Environmental Chemical Engineering, 9(3), 105256.
Wedian, F., Al-Qudah, M. A., & Al-Mazaideh, G. M. (2017). Corrosion inhibition of copper by Capparis spinosa L. extract in strong acidic medium: experimental and density functional theory. International Journal of Electrochemical Science, 12(6), 4664-4676.
El Mouden, O. I., Anejjar, A., Salghi, R., Jodeh, S., Hamed, O., Warad, I., ... & Dassanayake, R. S. (2015). Inhibitive Action of Capparis Spinosa Extract on the Corrosion of Carbon Steel in an Aqueous Medium of Hydrochloric Acid. Journal of Mineral Metal and Material Engineering, 1, 1-7.
Lazrak, J., Ech-Chihbi, E., El Ibrahimi, B., El Hajjaji, F., Rais, Z., Tachihante, M., & Taleb, M. (2022). Detailed DFT/MD simulation, surface analysis and electrochemical computer explorations of aldehyde derivatives for mild steel in 1.0 M HCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 632, 127822.
Fernine, Y., Ech-Chihbi, E., Arrousse, N., El Hajjaji, F., Bousraf, F., Touhami, M. E., ... & Taleb, M. (2021). Ocimum basilicium seeds extract as an environmentally friendly antioxidant and corrosion inhibitor for aluminium alloy 2024-T3 corrosion in 3 wt% NaCl medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127232.
Jmiai, A., El Ibrahimi, B., Tara, A., El Issami, S., Jbara, O., & Bazzi, L. (2018). Alginate biopolymer as green corrosion inhibitor for copper in 1 M hydrochloric acid: experimental and theoretical approaches. Journal of Molecular Structure, 1157, 408-417.
Xu, X., Qu, J., & Huang, H. (2023). Synthesis of a dibenzimidazole compound and its corrosion inhibition behavior on AZ91D Mg alloy in 3.5 wt.% NaCl solution. Journal of Molecular Structure, 1291, 136065.
Shahmoradi, A. R., Talebibahmanbigloo, N., Nickhil, C., Nisha, R., Javidparvar, A. A., Ghahremani, P., ... & Ramezanzadeh, B. (2022). Molecular-MD/atomic-DFT theoretical and experimental studies on the quince seed extract corrosion inhibition performance on the acidic-solution attack of mild-steel. Journal of Molecular Liquids, 346, 117921.
Geng, S., Hu, J., Yu, J., Zhang, C., Wang, H., & Zhong, X. (2022). Rosin imidazoline as an eco-friendly corrosion inhibitor for the carbon steel in CO2-containing solution and its synergistic effect with thiourea. Journal of Molecular Structure, 1250, 131778.
Benzbiria, N., Thoume, A., Echihi, S., Belghiti, M. E., Elmakssoudi, A., Zarrouk, A., ... & Zertoubi, M. (2023). Coupling of experimental and theoretical studies to apprehend the action of benzodiazepine derivative as a corrosion inhibitor of carbon steel in 1M HCl. Journal of Molecular Structure, 1281, 135139.
Hau, N. N., & Huong, D. Q. (2023). Effect of aromatic rings on mild steel corrosion inhibition ability of nitrogen heteroatom-containing compounds: Experimental and theoretical investigation. Journal of Molecular Structure, 1277, 134884.
Obi-Egbedi, N. O., & Obot, I. B. (2011). Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4. Corrosion science, 53(1), 263-275.
El-Gendy, B. E. D. M., Atwa, S. T., Ahmed, A. A., & El-Etre, A. Y. (2019). Synthesis and characterization of carbon steel corrosion inhibitors based on 4, 5, 6, 7-tetrahydrobenzo [b] thiophene Scaffold. Protection of Metals and Physical Chemistry of Surfaces, 55, 179-186.
Chen, L., Lu, D., & Zhang, Y. (2022). Organic compounds as corrosion inhibitors for carbon steel in HCl solution: A comprehensive review. Materials, 15(6), 2023.
Timothy, U. J., Mamudu, U., Solomon, M. M., Umoren, P. S., Igwe, I. O., Anyanwu, P. I., ... & Umoren, S. A. (2024). In-situ biosynthesized plant exudate gums silver nanocomposites as corrosion inhibitors for mild steel in hydrochloric acid medium. International Journal of Biological Macromolecules, 132065.
Verma, D. K., & Khan, F. (2016). Corrosion inhibition of mild steel in hydrochloric acid using extract of glycine max leaves. Research on Chemical Intermediates, 42, 3489-3506.
Hsissou, R., Benhiba, F., Khudhair, M., Berradi, M., Mahsoune, A., Oudda, H., ... & Zarrouk, A. (2020). Investigation and comparative study of the quantum molecular descriptors derived from the theoretical modeling and Monte Carlo simulation of two new macromolecular polyepoxide architectures TGEEBA and HGEMDA. Journal of King Saud University-Science, 32(1), 667-676.
Gopiraman, M., Selvakumaran, N., Kesavan, D., & Karvembu, R. (2012). Adsorption and corrosion inhibition behaviour of N-(phenylcarbamothioyl) benzamide on mild steel in acidic medium. Progress in Organic Coatings, 73(1), 104-111.
Pandarinathan, V., Lepkova, K., Bailey, S. I., Becker, T., & Gubner, R. (2014). Adsorption of corrosion inhibitor 1-dodecylpyridinium chloride on carbon steel studied by in situ AFM and electrochemical methods. Industrial & Engineering Chemistry Research, 53(14), 5858-5865.
Singh, A., Ansari, K. R., Chauhan, D. S., Quraishi, M. A., Lgaz, H., & Chung, I. M. (2020). Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium. Journal of colloid and interface science, 560, 225-236.
Rahimi, A., Farhadian, A., Berisha, A., Shaabani, A., Varfolomeev, M. A., Mehmeti, V., ... & Djimasbe, R. (2022). Novel sucrose derivative as a thermally stable inhibitor for mild steel corrosion in 15% HCl medium: An experimental and computational study. Chemical Engineering Journal, 446, 136938.
Erazua, E. A., & Adeleke, B. B. (2019). A Computational Study of Quinoline Derivatives as Corrosion Inhibitors for Mild Steel in Acidic Medium. Journal of Applied Sciences and Environmental Management, 23(10), 1819-1824.
Saha, S. K., Ghosh, P., Hens, A., Murmu, N. C., & Banerjee, P. (2015). Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Physica E: Low-dimensional systems and nanostructures, 66, 332-341.
Singh, A., Ansari, K. R., Haque, J., Dohare, P., Lgaz, H., Salghi, R., & Quraishi, M. A. (2018). Effect of electron donating functional groups on corrosion inhibition of mild steel in hydrochloric acid: Experimental and quantum chemical study. Journal of the Taiwan Institute of Chemical Engineers, 82, 233-251.
Fouda, A. S., Abdel-Wahed, H. M., Atia, M. F., & El-Hossiany, A. (2023). Novel porphyrin derivatives as corrosion inhibitors for stainless steel 304 in acidic environment: synthesis, electrochemical and quantum calculation studies. Scientific Reports, 13(1), 17593.
Rasul, H. H., Mamad, D. M., Azeez, Y. H., Omer, R. A., & Omer, K. A. (2023). Theoretical investigation on corrosion inhibition efficiency of some amino acid compounds. Computational and Theoretical Chemistry, 1225, 114177.
Elabbasy, H. M., Toghan, A., & Gadow, H. S. (2024). Cysteine as an Eco-Friendly Anticorrosion Inhibitor for Mild Steel in Various Acidic Solutions: Electrochemical, Adsorption, Surface Analysis, and Quantum Chemical Calculations. ACS omega, 9(11), 13391-13411.
Liu, Z., Zhang, F., Li, X., & Wang, D. (2023). Improved corrosion inhibition of calcium disodium EDTA for mild steel in chloride-contaminated concrete pore solution. Cement and Concrete Composites, 140, 105075.
Li, B., Wang, W., Chen, L., Zheng, X., Gong, M., Fan, J., ... & Zhu, G. (2023). Corrosion inhibition effect of magnolia grandiflora leaves extract on mild steel in acid solution. International Journal of Electrochemical Science, 18(4), 100082.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Hussein S. Hassan, Khalid H. Rashid, Khalida F. AL-Azawi, Anees A. Khadom, Hameed B. Mahood
This work is licensed under a Creative Commons Attribution 4.0 International License.