A Comparative Investigation on Powder Mixed EDM Machining of Steel Alloys with Multi-Objective Optimization Using Fuzzy-TOPSIS Method
Keywords:
PMEDM Process, Surface roughness, MRR, TWR, Fuzzy TOPSIS method, surface cracks, white layer, recast layerAbstract
The current work offers a comparative study that examined the effects of various process parameters, such as dielectric fluid, current (IP), pulse on time (TON), and different conductive powder particles mixed dielectric fluids, on electrical discharge machining (EDM) of AISI 1040, EN31, and HCHCr steels, respectively. The findings indicate that adding conductive particles to the dielectric medium during the powder-mixed EDM (PMEDM) process enhances energy distribution across the spark gap, thereby improving material removal capacity and the surface characteristics of the machined surfaces. Experimental results show that the concentration of powder particles has the most significant impact on surface roughness (Ra) and tool wear rate (TWR), while the most critical factor affecting the material removal rate (MRR) is the current (IP). Additionally, increasing the IP and TON leads to the formation of continuous, thick cracks and a thin white coating on the EDMed surface, as evidenced by scanning electron microscopy (SEM) images of the surface morphology. The study also employs a multi-optimization technique using the Fuzzy-based TOPSIS method to investigate the cumulative effects of the control parameters on performance indicators, namely Ra, MRR, and TWR. In experimental run 8 i.e. moderate IP (5 A), higher TON (180 µs), and higher concentration of copper powder (10 g/l) mixed in EDM oil while machining of AISI 1040, the optimal results i.e. Ra is 5.983 µm, MRR is 27.243 mm3/min, and TWR is 0.775 mm3/min were obtained, respectively.
Downloads
References
A. S. Walia, V. Srivastava, P. S. Rana, N. Somani, N. K. Gupta, G. Singh, D. Y. Pimenov, T. Mikolajczyk, and N. Khanna, “Prediction of tool shape in electrical discharge machining of EN31 steel using machine learning techniques,” Metals, vol. 11, no. 11, p. 1668, 2021. DOI: 10.3390/met11111668. DOI: https://doi.org/10.3390/met11111668
W. Konig and S. Rummenholler, “Technological and industrial safety aspects in milling FRP,” ASME Mach. Adv. Comp., vol. 45, no. 66, pp. 1–14, 1993. https://dokumen.pub/abrasive-water-jet-machining-of-engineering-materials-1st-ed-2020-978-3-030-36000-9-978-3-030-36001-6.html.
W. F. Sales, J. Schoop, L. R. R. da Silva, A. R. Machado, and I. S. Jawahir, “A review of surface integrity in machining of hardened steels,” J. Manuf. Process., vol. 58, pp. 136–162, Oct. 2020. DOI: 10.1016/j.jmapro.2020.07.040. DOI: https://doi.org/10.1016/j.jmapro.2020.07.040
S. P. Sivapirakasam, J. Mathew, and M. Surianarayanan, “Multi-attribute decision making for green electrical discharge machining,” Expert Syst. Appl., vol. 38, no. 7, pp. 8370–8374, Jul. 2011. DOI: https://doi.org/10.1016/j.eswa.2011.01.026. DOI: https://doi.org/10.1016/j.eswa.2011.01.026
K. Gupta, Introduction to Abrasive Water Jet Machining, 1st ed. Cham, Switzerland: Springer, 2020, pp. 1–11. DOI: 10.1007/978-3-030-36001-6_1 DOI: https://doi.org/10.1007/978-3-030-36001-6_1
R. Singh and J. S. Khamba, “Mathematical modeling of tool wear rate in ultrasonic machining of titanium,” Int. J. Adv. Manuf. Technol., vol. 43, no. 5, pp. 573–580, 2009. https://doi.org/10.1007/s00170-008-1729-5. DOI: https://doi.org/10.1007/s00170-008-1729-5
G. Q. Wang, H. S. Li, N. S. Qu, and D. Zhu, “Investigation of the hole-formation process during double-sided through-mask electrochemical machining,” J. Mater. Process. Technol., vol. 234, pp. 95–101, 2016. https://doi.org/10.1016/j.jmatprotec.2016.01.010. DOI: https://doi.org/10.1016/j.jmatprotec.2016.01.010
A. K. Dubey and V. Yadava, “Laser beam machining—A review,” Int. J. Mach. Tools Manuf., vol. 48, no. 6, pp. 609–628, May 2008. DOI: https://doi.org/10.1016/J.IJMACHTOOLS.2007.10.017. DOI: https://doi.org/10.1016/j.ijmachtools.2007.10.017
M. Patel, S. Kumar, J. Jagadish, D. Y. Pimenov, and K. Giasin, “Experimental analysis and optimization of EDM parameters on HcHcr steel in context with different electrodes and dielectric fluids using hybrid Taguchi-based PCA-utility and CRITIC-utility approaches,” Metals, vol. 11, no. 3, p. 419, Mar. 2021. https://doi.org/10.3390/met11030419. DOI: https://doi.org/10.3390/met11030419
H. K. Kansal, S. Singh, and P. Kumar, “Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel,” J. Manuf. Process., vol. 9, no. 1, pp. 13–22, Jan. 2007. 10.1016/S1526-6125(07)70104-4. DOI: https://doi.org/10.1016/S1526-6125(07)70104-4
M. N. Alam, A. N. Siddiquee, Z. A. Khan, and N. Z. Khan, “A comprehensive review on wire EDM performance evaluation,” J. Process Mech. Eng., SAGE Part E, vol. 236, no. 4, pp. 1–23, Jan. 2022. DOI: https://doi.org/10.1177/09544089221074843. DOI: https://doi.org/10.1177/09544089221074843
M. N. Alam, A. N. Siddiquee, and Z. A. Khan, “Machining of ZrO2 using wire EDM: An experiment based investigation via assisted electrode,” Adv. Mater. Process. Technol., vol. 9, pp. 1–18, Aug. 2023. https://doi.org/10.1080/2374068X.2023.2247284. DOI: https://doi.org/10.1080/2374068X.2023.2247284
J. P. Agrawal, N. Somani, and N. K. Gupta, “A systematic review on powder-mixed electrical discharge machining (PMEDM) technique for machining of difficult-to-machine materials,” Innovation Emerging Technol., vol. 11, pp. 1–11, Feb. 2024. https://doi.org/10.1142/S2737599424400024. DOI: https://doi.org/10.1142/S2737599424400024
P. S. Bains, S. S. Sidhu, H. S. Payal, and S. Kaur, “Magnetic field influence on surface modifications in powder mixed EDM,” Silicon, vol. 11, no. 1, pp. 415–423, Feb. 2019. https://link.springer.com/article/10.1007/s12633-018-9907-z. DOI: https://doi.org/10.1007/s12633-018-9907-z
A. S. Hameed, F. O. Hamdoom, and M. S. Jafar, “Influence of powder mixed EDM on the surface hardness of die steel,” ICSET 2019, IOP Publishing, vol. 518, p. 032030, 2019. DOI: 10.1088/1757-899X/518/3/032030. DOI: https://doi.org/10.1088/1757-899X/518/3/032030
F. Kazi, C. A. Waghmare, and M. S. Sohani, “Optimization and comparative analysis of silicon and chromium powder-mixed EDM process by TOPSIS technique,” Eng. Appl. Sci. Res., vol. 48, no. 2, pp. 190–199, Mar. 2021. Retrieved from https://ph01.tci-thaijo.org/index.php/easr/article/view/240334. https://www.thaiscience.info/Journals/Article/EASR/10994133.pdf
M. Singh and S. Singh, “Comparative capabilities of conventional and ultrasonic-assisted electrical discharge machining of Nimonic Alloy 75,” J. Mater. Eng. Perform., vol. 31, pp. 1–13, 2022. https://doi.org/10.1007/s11665-022-06601-1. DOI: https://doi.org/10.1007/s11665-022-06601-1
Y. Zhang, G. Zhang, Z. Zhang, Y. Zhang, and Y. Huang, “Effect of assisted transverse magnetic field on distortion behavior of thin-walled components in WEDM process,” Chin. J. Aeronaut., vol. 35, no. 2, pp. 291–307, Feb. 2022. https://doi.org/10.1016/j.cja.2020.10.034. DOI: https://doi.org/10.1016/j.cja.2020.10.034
B. Surekha, T. Sree Lakshmi, H. Jena, and P. Samal, “Response surface modelling and application of fuzzy grey relational analysis to optimise the multi response characteristics of EN-19 machined using powder mixed EDM,” Aust. J. Mech. Eng., pp. 1–11, Jan. 2019. https://doi.org/10.1080/14484846.2018.1564527. DOI: https://doi.org/10.1080/14484846.2018.1564527
T. Roy and R. K. Dutta, “Integrated fuzzy AHP and fuzzy TOPSIS methods for multi-objective optimization of electro discharge machining process,” Soft Comput., vol. 23, no. 13, pp. 5053–5063, Jul. 2019. https://doi.org/10.1007/s00500-018-3173. DOI: https://doi.org/10.1007/s00500-018-3173-2
P. R. Dewan and P. K. Kundu, “Optimization of parameters of powder added EDM of Nimonic C-263 using TOPSIS,” Sadhana, vol. 49, no. 190, pp. 1–17, May 2024. DOI: 10.1007/s12046-024-02516-w. DOI: https://doi.org/10.1007/s12046-024-02516-w
K. Paswan et al., “An analysis of microstructural morphology, surface topography, surface integrity, recast layer, and machining performance of grapheme nanosheets on Inconel 718 superalloy: Investigating the impact on EDM characteristics, surface characterizations, and optimization,” J. Mater. Res. Technol., vol. 27, pp. 7138–7158, Nov. 2023. DOI: https://doi.org/10.1016/j.jmrt.2023.11.080 DOI: https://doi.org/10.1016/j.jmrt.2023.11.080
A. Kumar, S. Kumar, A. Mandal, and A. R. Dixit, “Investigation of powder mixed EDM process parameters for machining Inconel alloy using response surface methodology,” Mater. Today Proc., vol. 5, no. 2, pp. 6183–6188, Jan. 2018. DOI: 10.1016/j.matpr.2017.11.489. https://doi.org/10.1016/j.matpr.2017.12.225. DOI: https://doi.org/10.1016/j.matpr.2017.12.225
N. HuuPhan, T. Muthuramalingam, N. N. Vu, and N. Q. Tuan, “Influence of micro size titanium powder-mixed dielectric medium on surface quality measures in EDM process,” Int. J. Adv. Manuf. Technol., vol. 109, pp. 797–807, 2020. DOI: https://doi.org/10.1007/s00170-020-05698-9. DOI: https://doi.org/10.1007/s00170-020-05698-9
S. Ramesh and M. P. Jenarthanan, “Investigation of powder mixed EDM of nickel-based superalloy using cobalt, zinc and molybdenum powders,” Trans. Indian Inst. Met., vol. 74, no. 4, pp. 923–936, Apr. 2021. https://doi.org/10.1007/s12666-020-02170-w. DOI: https://doi.org/10.1007/s12666-020-02170-w
H. Hong, A. T. Riga, J. M. Gahoon, and C. G. Scott, “Machinability of steels and titanium alloys under lubrication,” Wear, vol. 162–164, pp. 34–39, Apr. 1993. http://dx.doi.org/10.1299/jsmec.46.107. DOI: https://doi.org/10.1016/0043-1648(93)90481-Z
H. Bisaria and P. Shandilya, “Experimental investigation on wire electric discharge machining (WEDM) of Nimonic C-263 superalloy,” Mater. Manuf. Process., vol. 34, no. 1, pp. 83–92, Jan. 2019. DOI: https://doi.org/10.1080/10426914.2018.1532589. DOI: https://doi.org/10.1080/10426914.2018.1532589
P. V. Ramana, M. Kharub, J. Singh, and J. Singh, “On material removal and tool wear rate in powder contained electric discharge machining of die steels,” Mater. Today Proc., vol. 38, pp. 2411–2416, Jan. 2021. https://doi.org/10.1016/j.matpr.2020.07.382 DOI: https://doi.org/10.1016/j.matpr.2020.07.382
M. Shabgard and B. Khosrozadeh, “Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti–6Al–4V alloy in EDM process,” J. Manuf. Process., vol. 25, pp. 212–219, Jan. 2017. https://doi.org/10.1016/j.jmapro.2016.11.016. DOI: https://doi.org/10.1016/j.jmapro.2016.11.016
M. Niamat, S. Sarfraz, H. Aziz, M. Jahanzaib, E. Shehab, and W. Ahmad, “Effect of different dielectrics on material removal rate, electrode wear rate and microstructures in EDM,” Procedia CIRP, vol. 60, pp. 2–7, 2017. https://doi.org/10.1016/j.procir.2017.02.023 DOI: https://doi.org/10.1016/j.procir.2017.02.023
D. R. Sahu and A. Mandal, “Critical analysis of surface integrity parameters and dimensional accuracy in powder-mixed EDM,” Mater. Manuf. Process., vol. 35, no. 4, pp. 430–441, Mar. 2020. https://doi.org/10.1080/10426914.2020.1718695. DOI: https://doi.org/10.1080/10426914.2020.1718695
B. Gugulothu, V. Vidyapriya, P. Sharma, H. Venkatesan, and N. Pragadish, “Electric discharge machining: A promising choice for surface modification of metallic implants,” Mater. Manuf. Process., vol. 7, pp. 107–136, Aug. 2023. http://dx.doi.org/10.4018/978-1-6684-7412-9.ch007. DOI: https://doi.org/10.4018/978-1-6684-7412-9.ch007
Published
How to Cite
Issue
Section
Copyright (c) 2024 Md Nadeem Alam, Mohd Atif Wahid, Raghib Ahsan, Naveen Kumar, Shoaib Sabri
This work is licensed under a Creative Commons Attribution 4.0 International License.