Selective Laser Hardening of Aluminium AA6061-O Alloy with Nanosecond Laser Pulses

Authors

  • Furat I. Hussein Mechatronics Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 10071 Iraq
  • Sanaa Al-Sumaidae Automated Manufacturing Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 10071 Iraq
  • Ahmed Alhamaoy Laser and Optoelectronic Eng. Dep., College of Engineering, Al-Nahrain University
  • Kareem N. Salloomi Automated Manufacturing Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 10071 Iraq
  • Muhannad Ahmed Obeidi School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland

DOI:

https://doi.org/10.24237/djes.2025.18107

Keywords:

Nanosecond laser, Al 6061-O alloy, Hardness, Surface Roughness, Laser Hardening

Abstract

Conventional hardening, sometimes, is not economically viable due to consuming additional costs and energy. This makes applying selective hardening on specific regions an attractive alternative for members subjected to local friction and wear. This work is devoted for applying cold working hardening on discrete values on regions of aluminum 6061-O alloy using nanosecond fiber laser of 100 W average power and pulse duration of 81 ns. An exaggerated plasma pressure resulted from ablation a thin coat layer on the metal surface was built in order to cause cold plastic deformation and increase the surface hardness of the alloy. The power density (Pd) and pulse overlap percentage (OV) were employed as working parameters. Due to the sensitivity of aluminium alloys to excessive heating, the criteria of the best outcomes were considered according to the objective of the study in supporting the hardness by strain hardening. The higher attained a significant increase in the hardness associated with less consumed optical energy, the most clean and flawless surface, observed by the high-resolution SEM images, which indicates hardening with cold work. The best hardness value is conducted at a Pd of 4.46 GW/cm2 reaching a hardness of 57.6 HV at an OV of 43% and 53.8 VHD at an OV of 77.3%. The X-Ray diffraction analysis (XRD) revealed a reduction of 56% in grain size compared to the original alloy and increase in the number of dislocations density by 378%.

Downloads

Download data is not yet available.

References

[1] Y. Wang, Y. Zhu, S. Hou, H. Sun, and Y. Zhou, “Investigation on fatigue performance of cold expansion holes of 6061-T6 aluminum alloy,” Int. J. Fatigue, vol. 95, pp. 216–228, Feb. 2017, doi: 10.1016/j.ijfatigue.2016.10.030.

[2] A. G. Rao, M. Mohape, V. A. Katkar, D. S. Gowtam, V. P. Deshmukh, and A. K. Shah, “Fabrication and Characterization of Aluminum (6061)-Boron-Carbide Functionally Gradient Material,” Mater. Manuf. Process., vol. 25, no. 7, pp. 572–576, Jul. 2010, doi: 10.1080/10426910903180037.

[3] Afaf M. Abd El-Hameed and Y. A. Abdel-Aziz, “Aluminium Alloys in Space Applications: A Short Report,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 22, no. 1, pp. 1–7, Jan. 2021, doi: 10.37934/araset.22.1.17.

[4] Y. W. Tham, M. W. Fu, H. H. Hng, Q. X. Pei, and K. B. Lim, “Microstructure and Properties of Al-6061 Alloy by Equal Channel Angular Extrusion for 16 Passes,” Mater. Manuf. Process., vol. 22, no. 7–8, pp. 819–824, Sep. 2007, doi: 10.1080/10426910701446754.

[5] I. Guzmán, E. Granda, J. Acevedo, A. Martínez, Y. Dávila, and R. Velázquez, “Comparative in Mechanical Behavior of 6061 Aluminum Alloy Welded by Pulsed GMAW with Different Filler Metals and Heat Treatments,” Materials (Basel)., vol. 12, no. 24, p. 4157, Dec. 2019, doi: 10.3390/ma12244157.

[6] A. H. Naronikar, H. N. A. Jamadagni, A. Simha, and B. Saikiran, “Optimizing the Heat Treatment Parameters of Al-6061 Required for Better Formability,” Mater. Today Proc., vol. 5, no. 11, pp. 24240–24247, 2018, doi: 10.1016/j.matpr.2018.10.219.

[7] M. Benachour, N. Benachour, and M. Benguediab, “Effect of compressive residual stress generated by plastic preload on fatigue initiation of 6061 Al-alloy,” Procedia Struct. Integr., vol. 2, pp. 3090–3097, 2016, doi: 10.1016/j.prostr.2016.06.386.

[8] A. Kaimkuriya, B. Sethuraman, and M. Gupta, “Effect of Physical Parameters on Fatigue Life of Materials and Alloys: A Critical Review,” Technologies, vol. 12, no. 7, p. 100, Jul. 2024, doi: 10.3390/technologies12070100.

[9] M. Karamimoghadam, M. Rezayat, M. Moradi, A. Mateo, and G. Casalino, “Laser Surface Transformation Hardening for Automotive Metals: Recent Progress,” Metals (Basel)., vol. 14, no. 3, p. 339, Mar. 2024, doi: 10.3390/met14030339.

[10] B. Peeters, O. Malek, S. Castagne, and B. Lauwers, “Selective laser hardening of injection mould components on multi-axis machining centers,” Procedia CIRP, vol. 95, pp. 909–914, 2020, doi: 10.1016/j.procir.2020.01.154.

[11] M. Rahman, J. Haider, and M. S. J. Hashmi, “Health and Safety Issues in Emerging Surface Engineering Techniques,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 35–47. doi: 10.1016/B978-0-08-096532-1.00806-2.

[12] M. Dowling, A. R. Al-Hamaoy, and M. A. Obeidi, “Laser surface cladding of metal parts,” Results in Surfaces and Interfaces, vol. 12, p. 100142, 2023, doi: https://doi.org/10.1016/j.rsurfi.2023.100142.

[13] A. Harnett, M. Ahmed Obeidi, I. U. Ahad, and A. R. Al-Hamaoy, “Comparing the surface hardness of mild steel processed with CO₂ and fibre lasers,” Results Mater., vol. 18, p. 100400, 2023, doi: https://doi.org/10.1016/j.rinma.2023.100400.

[14] J. Liu, C. Ye, and Y. Dong, “Recent development of thermally assisted surface hardening techniques: A review,” Adv. Ind. Manuf. Eng., vol. 2, p. 100006, May 2021, doi: 10.1016/j.aime.2020.100006.

[15] A. R. Alhamaoy, G. S. Sadiq, F. I. Hussein, and S. N. Ali, “The Cyclic Fatigue Behavior for 6061-T6 Al Alloy Shafts Processed by Laser Shock Peening,” Mater. Sci. Forum, vol. 1002, pp. 21–32, 2020, doi: 10.4028/www.scientific.net/MSF.1002.21.

[16] A. Issa, F. I. Hussein Al-Najjar, A. Al-Hamaoy, and B. G. Rasheed, “Physical principles of laser–material interaction regimes for laser machining processes,” in Laser Micro- and Nano-Scale Processing, IOP Publishing, 2021. doi: 10.1088/978-0-7503-1683-5ch3.

[17] M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non. Cryst. Solids, vol. 319, no. 1–2, pp. 129–135, May 2003, doi: 10.1016/S0022-3093(02)01909-9.

[18] J. Martan, J. Kunes, and N. Semmar, “Experimental mathematical model of nanosecond laser interaction with material,” Appl. Surf. Sci., vol. 253, no. 7, pp. 3525–3532, Jan. 2007, doi: 10.1016/j.apsusc.2006.07.059.

[19] R. Zhou, Z. Zhang, and M. Hong, “The art of laser ablation in aeroengine: The crown jewel of modern industry,” J. Appl. Phys., vol. 127, no. 8, Feb. 2020, doi: 10.1063/1.5134813.

[20] L. Gao, C. Liu, J. Liu, T. Yang, Y. Jin, and D. Sun, “Hole formation mechanisms in double-sided laser drilling of Ti6Al4V-C/SiC stacked materials,” J. Mater. Process. Technol., vol. 325, p. 118307, Apr. 2024, doi: 10.1016/j.jmatprotec.2024.118307.

[21] Z. Liao et al., “Surface integrity in metal machining - Part I: Fundamentals of surface characteristics and formation mechanisms,” Int. J. Mach. Tools Manuf., vol. 162, p. 103687, Mar. 2021, doi: 10.1016/j.ijmachtools.2020.103687.

[22] A. M. Khudhair and F. I. Hussein, “High Speed Shock Peening by Fiber Laser for Al Alloy 6061-T6 Thin Sheets,” J. Mater. Eng. Perform., vol. 31, no. 10, pp. 8585–8595, Oct. 2022, doi: 10.1007/s11665-022-07133-4.

[23] S. Sathyajith and S. Kalainathan, “Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser,” Opt. Lasers Eng., vol. 50, no. 3, pp. 345–348, 2012, doi: 10.1016/j.optlaseng.2011.11.002.

[24] O. Netprasert, V. Tangwarodomnukun, and C. Dumkum, “Surface Hardening of AISI 420 Stainless Steel by Using a Nanosecond Pulse Laser,” Mater. Sci. Forum, vol. 911, pp. 44–48, Jan. 2018, doi: 10.4028/www.scientific.net/MSF.911.44.

[25] M. Ezzat, M. A. El-Waily, M. Abdel-Rahman, and Y. Ismail, “Treatment of Aluminum Alloys Surface by Nanosecond Laser,” Surf. Rev. Lett., vol. 25, no. 04, p. 1850079, Jun. 2018, doi: 10.1142/S0218625X18500798.

[26] A. M. Mostafa, M. F. Hameed, and S. S. Obayya, “Effect of laser shock peening on the hardness of AL-7075 alloy,” J. King Saud Univ. - Sci., vol. 31, no. 4, pp. 472–478, Oct. 2019, doi: 10.1016/j.jksus.2017.07.012.

[27] A. Kadhim, E. T. Salim, S. M. Fayadh, A. A. Al-Amiery, A. A. H. Kadhum, and A. B. Mohamad, “Effect of Multipath Laser Shock Processing on Microhardness, Surface Roughness, and Wear Resistance of 2024-T3 Al Alloy,” Sci. World J., vol. 2014, pp. 1–6, 2014, doi: 10.1155/2014/490951.

[28] C. Y. Ho, J. M. Holt, and H. Mindlin, Structural Alloys Handbook: 1996 Edition; Incorporating Supplements Throught 1995, no. v. 2. Cindas/Purdue Univ., 1997.

[29] F. I. Hussein Al-Najjar, A. Al-Hamaoy, B. G. Rasheed, and A. Issa, “Effective working parameters of laser micro-/nano-machining,” in Laser Micro- and Nano-Scale Processing, IOP Publishing, 2021, pp. 44–66. doi: 10.1088/978-0-7503-1683-5ch4.

[30] M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, and G. Janusas, “Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction,” Nanomaterials, vol. 10, no. 9, pp. 1–21, 2020, doi: 10.3390/nano10091627.

[31] M. Kawsar, M. S. Hossain, N. M. Bahadur, and S. Ahmed, “Synthesis of nano-crystallite hydroxyapatites in different media and a comparative study for estimation of crystallite size using Scherrer method, Halder-Wagner method size-strain plot, and Williamson-Hall model,” Heliyon, vol. 10, no. 3, p. e25347, 2024, doi: 10.1016/j.heliyon.2024.e25347.

[32] A. Salimianrizi, E. Foroozmehr, M. Badrossamay, and H. Farrokhpour, “Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6,” Opt. Lasers Eng., vol. 77, pp. 112–117, 2016, doi: 10.1016/j.optlaseng.2015.08.001.

[33] Y.-F. Tzeng, “Process Characterisation of Pulsed Nd:YAG Laser Seam Welding,” Int. J. Adv. Manuf. Technol., vol. 16, no. 1, pp. 10–18, Jan. 2000, doi: 10.1007/PL00013126.

[34] P.-R. Jang, C.-G. Kim, G.-P. Han, M.-C. Ko, U.-C. Kim, and H.-S. Kim, “Influence of laser spot scanning speed on micro-polishing of metallic surface using UV nanosecond pulse laser,” Int. J. Adv. Manuf. Technol., vol. 103, no. 1–4, pp. 423–431, Jul. 2019, doi: 10.1007/s00170-019-03559-8.

[35] A. Gujba and M. Medraj, “Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening,” Materials (Basel)., vol. 7, no. 12, pp. 7925–7974, Dec. 2014, doi: 10.3390/ma7127925.

[36] S. B. Puplampu, A. Siriruk, A. Sharma, and D. Penumadu, “Multiaxial deformation behavior of aluminum alloy 6061 subjected to fire damage,” Mech. Mater., vol. 159, p. 103885, Aug. 2021, doi: 10.1016/j.mechmat.2021.103885.

[37] Y. G. Ko and K. Hamad, “Annealing Behavior of 6061 Al Alloy Subjected to Differential Speed Rolling Deformation,” Metals (Basel)., vol. 7, no. 11, p. 494, Nov. 2017, doi: 10.3390/met7110494.

[38] F. Ghahramanifard, A. Rouhollahi, and O. Fazlolahzadeh, “Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure,” Superlattices Microstruct., vol. 114, no. May 2018, pp. 1–14, 2018, doi: 10.1016/j.spmi.2017.07.019.

[39] ASM Handbook Committee, Ed., “Heat Treating of Aluminum Alloys,” in ASM Handbook, Volume 4: Heat Treating, www.asminternational.org, 1991, pp. 841–879. doi: 10.1361/asmhba0001205.

[40] B. D. C. and S. R. Stock, Elements of X-Ray Diffraction, 3rd Editio. Pearson Education Limited, 2014.

[41] L. Doremus, J. Cormier, P. Villechaise, G. Henaff, Y. Nadot, and S. Pierret, “Influence of residual stresses on the fatigue crack growth from surface anomalies in a nickel-based superalloy,” Mater. Sci. Eng. A, vol. 644, pp. 234–246, Sep. 2015, doi: 10.1016/j.msea.2015.07.077.

[42] Z. S. Ma, Y. C. Zhou, S. G. Long, and C. Lu, “Residual stress effect on hardness and yield strength of Ni thin film,” Surf. Coatings Technol., vol. 207, pp. 305–309, Aug. 2012, doi: 10.1016/j.surfcoat.2012.07.002.

Downloads

Published

2025-03-06

How to Cite

[1]
“Selective Laser Hardening of Aluminium AA6061-O Alloy with Nanosecond Laser Pulses”, DJES, vol. 18, no. 1, pp. 120–135, Mar. 2025, doi: 10.24237/djes.2025.18107.

Similar Articles

1-10 of 650

You may also start an advanced similarity search for this article.