Optimizing And Comparative of Polymer-45S5BG and Polymer- HA Coating by Electrophoretic Deposition (EPD)

https://doi.org/10.24237/djes.2021.14402

Authors

  • Nour Abdulkareem Rasheed Department of Production and Metallurgy Engineering, University of Technology, Baghdad – Iraq
  • Makarim H. Abdulkareem Department of Production and Metallurgy Engineering, University of Technology, Baghdad – Iraq
  • Iman Adnan Anoon Department of Production and Metallurgy Engineering, University of Technology, Baghdad – Iraq

Keywords:

Electrophoretic deposition,, Gelatin, Chitosan, 45S5BG, Taguchi approach

Abstract

In this study, two systems of bio-ceramic coating (45S5 bioactive glass and hydroxyapatite) were used in order to compare between them for biomedical applications. Each system consists from two layers of coating done by electrophoretic deposition (EPD) technique on 316L stainless steel material as substrate. Two types of biopolymer were used (Chitosan with Gelatin) as first layer of coating. Taguchi approach with L9 array was used in order to choose the best conditions (concentrations, voltage and time) for coating layers. Each system consists of two layer (biopolymer (first layer) and bioceramic (second layer)) materials. The optimum parameters for first layer of biopolymer was (3g/L concentration, 20 voltage and 3 minute) while optimum parameters for second layer of bioceramic group (6g/L concentration, 30 voltage and 1 minute) for 45S5 BG system and (6g/L concentration, 40 voltage and 1 minute) for HA system. Zeta potential test were employed to measure suspensions stability. The tape test method was used to evaluate the adhesion between substrate and coating layers, the results show that the percentage of removal area for optimum coating layer (biopolymer, 45S5 BG and HA   8.06%, 10.668%, 6.01% subsequently). XRD inspection was used for identify the phases of coating layers. The Cyclic polarization test was used for evaluation of pitting corrosion resistance, the results show all layers gives good corrosion resistance but 45S5BG system gives the best corrosion resistance when compared with HA system.

Downloads

Download data is not yet available.

References

G.W. Hastings. Journal of Physics E-Scientific Instruments. 1980; 13:599. DOI: https://doi.org/10.1088/0022-3735/13/6/001

S.M. Kurtz, E. Lau, K. Ong, K. Zhao, M. Kelly, KJ. Bozic. Clin Orthop Relat Res. 2009; 467:2606. DOI: https://doi.org/10.1007/s11999-009-0834-6

M.A. Mcgee, D.W. Howie, K. Costi, D.R. Haynes, C.I. Wildenauer, M.J. Pearcy, J.K. Mclean, Wear 241 (2000) 158. DOI: https://doi.org/10.1016/S0043-1648(00)00370-7

D.W. Hoeppner, V. Chandrasekaran, Wear 173 (1994) 189 DOI: https://doi.org/10.1016/0043-1648(94)90272-0

T.M. Sridhar, “Nanobioceramic coatings for biomedical applications”, Materials Technology, 25(2010)184-195. DOI: https://doi.org/10.1179/175355510X12723642365449

T. Fu, C.S. Wen, J. Lub, Y.M. Zhou, S.G. Mac, B.H. Dong, B.G. Liu, “Sol-gel derived TiO2 coating on plasma nitrided 316L stainless steel”, Vacuum, 86(2012)1402-1407. DOI: https://doi.org/10.1016/j.vacuum.2012.01.017

Y. Ramaswamy, C.T. Wu, H. Zreiqat, Expert Rev. Med. Devic 6 (2009) 423. DOI: https://doi.org/10.1586/erd.09.17

N. Eliaz, T.M. Sridha, U.K. Mudali, B. Raj, “Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications”, Surf. Eng. 21 (2005) 1–5. DOI: https://doi.org/10.1179/174329405X50091

D. Bellucci, A. Sola, P. Gentile, G. Ciardelli, V. Cannillo, “Biomimetic coating on bioactive glassderived scaffolds mimicking bone tissue”, J. Biomed. Mater. Res. - Part A. 100 A (2012) 3259–3266. DOI: https://doi.org/10.1002/jbm.a.34271

B. Ben-Nissan, C. Chai, and L. Evans, “Crystallographic and spectroscopic characterization and morphology of biogenic and synthetic Apatites”, in Encyclopedic Handbook of Biomaterials and Bioengineering Vol. 1, Part B: Applications, eds. D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E.R. Schwartz, (Marcel Dekker Inc., New York, 1995) pp:191-221.

Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [CrossRef] DOI: https://doi.org/10.1016/j.progpolymsci.2006.06.001

Kumbar, S.; Laurencin, C.; Deng, M. “Natural and Synthetic Biomedical Polymers”; Elsevier: Berlin/Heidelberg, Germany, 2014; pp. 1–402.

I. Corni , MP. Ryan, A. R. Boccaccini. Journal of the European Ceramic Society. 2008; 28:1353. DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.12.011

L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci. 52 (2007) 1–61. DOI: https://doi.org/10.1016/j.pmatsci.2006.07.001

A.R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, “Electrophoretic deposition of biomaterials”., J. R. Soc. Interface. 7 Suppl 5 (2010) S581–S613. DOI: https://doi.org/10.1098/rsif.2010.0156.focus

B. Ferrari, R. Moreno, EPD kinetics: A review, J. Eur. Ceram. Soc. 30 (2010) 1069–1078. DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.08.022

P. Sarkar, P.S. Nicholson, “Electrophoretic Deposition (EPD): Mechanisms, Kinetics and Application to Ceramics”, J. Am. Ceram. Soc. 79 (1996) 1987–2002. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08929.x

M. J. Kadhim, N. E. Abdullatef, M.H. Abdulkareem, “Optimization of Nano Hydroxyapatite/chitosan Electrophoretic Deposition on 316L Stainless Steel Using Taguchi Design of Experiments”, Al-Nahrain Journal for Engineering Sciences (NJES) Vol.20 No.5, 2017 pp.1215-1227.

Iman.A.Annon, “Advance coating on 316L Stainless steel substrate using an EPD for biomedical application”, phd Thesis, university of technology,2016.

M. A. U. Rehman, M. A. Munawar, D. W. Schubert, A. R. Boccaccini, “Electrophoretic deposition of chitosan/gelatin/bioactive glass composite coatings on 316L stainless steel: A design of experiment study”, Sct (2018). DOI: https://doi.org/10.1016/j.surfcoat.2018.12.013

S. Heise, C. Forster, S. Heer, H. Qi, J. Zhou, S. Virtanen, T. Lu, A. R. Boccaccini, “Electrophoretic deposition of gelatine nanoparticle/chitosan coatings”, Electrochimica Acta 307(2019), 318-325. DOI: https://doi.org/10.1016/j.electacta.2019.03.145

E. Avcu, F.E. Bas¸ tan, H.Z. Abdullah, M.A.U. Rehman, Y.Y. Avcu, A.R. Boccaccini, “Electrophoretic deposition of chitosan-based composite coatings for biomedical applications”: a review, Prog. Mater. Sci. 103 (2019) 69e108. DOI: https://doi.org/10.1016/j.pmatsci.2019.01.001

S. Heise, M. Hohlinger, Y.T. Hernandez, J.J.P. Palacio, J.A. Rodriquez Ortiz, V. Wagener, S. Virtanen, A.R. Boccaccini, “Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates, Electrochim”. Acta 232 (2017) 456e464. DOI: https://doi.org/10.1016/j.electacta.2017.02.081

Published

2021-12-06

How to Cite

[1]
N. A. Rasheed, M. . H. Abdulkareem, and I. . Adnan Anoon, “Optimizing And Comparative of Polymer-45S5BG and Polymer- HA Coating by Electrophoretic Deposition (EPD)”, DJES, vol. 14, no. 4, pp. 13–25, Dec. 2021.