Microstructure Study and Morphology of Ni / Nano Al2O3 Composite Coating Synthesied by Electroless Plating

https://doi.org/10.24237/djes.2021.14301

Authors

  • Hala M. Kadhim Department of Material Engineering, College of Engineering, University of Diyala

Keywords:

Ni-Based nanocomposition coating , Nano- Al2O3, Electroless plating method

Abstract

The electroless deposition method was used to prepare Ni-based nanocomposite coatings, this approach represents an alternate way of having coatings on the different substrates. Most of the previous literatures on this subject and work deals with a study the effect of the process conditions and, Bath composition on the microstructure at the macroscale of Ni-Al2O3 composite coatings. Though, effect on the step structure of the composition of the bath and microstructure are little, the present work aims to study the effect of hard ceramic Al2O3 nanoparticles at different concentrations (0.0, 0.5, 1.0, 2, 4) g/L, on the phase structure, microstructure and morphology of Al2O3 nanocomposite coating, in order to enhance the mechanical, plysical and chemical properties of nanocomposite coating. In this paper, An X-Ray diffraction method, spectroscopy (EDS), energy dispersive, and scanning electron microscope (SEM) were studied in the phase structure, chemical composition and morphological nanocomposition coatings. In the present paper, is evident from EDS study that the composite coating consists of Ni and nanoparticles of Al2O3. The micrograph study of the EDS showed that A flat and smooth surface is present in the deposited nanocomposite coating. Uniform distribution of nanoparticles of alumina within Ni-Matrix. And the XRD study showed the crystalline structure of the Ni- Al2O3 nanocomposite coating.

Downloads

Download data is not yet available.

References

M. Abdallah, F. H. Al-abdali, E. M. Kamar, R. El-Sayed, and R. S. Abdel Hameed, “Corrosion inhibition of aluminum in 1.0M HCl solution by some nonionic surfactant compounds containing five membered heterocyclic moiety,” Chem. Data Collect., vol. 28, p. 100407, 2020, doi: 10.1016/j.cdc.2020.100407. DOI: https://doi.org/10.1016/j.cdc.2020.100407

I. Paloumpa, A. Yfantis, P. Hoffmann, Y. Burkov, D. Yfantis, and D. Schmeißer, “Mechanisms to inhibit corrosion of Al alloys by polymeric conversion coatings,” Surf. Coatings Technol., vol. 180–181, pp. 308–312, 2004, doi: 10.1016/j.surfcoat.2003.10.076. DOI: https://doi.org/10.1016/j.surfcoat.2003.10.076

R. Karslioglu and H. Akbulut, “Comparison microstructure and sliding wear properties of nickel-cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition,” Appl. Surf. Sci., vol. 353, pp. 615–627, 2015, doi: 10.1016/j.apsusc.2015.06.161. DOI: https://doi.org/10.1016/j.apsusc.2015.06.161

J. K. Pancrecious, S. B. Ulaeto, R. Ramya, T. P. D. Rajan, and B. C. Pai, “Metallic composite coatings by electroless technique–a critical review,” Int. Mater. Rev., vol. 63, no. 8, pp. 488–512, 2018, doi: 10.1080/09506608.2018.1506692. DOI: https://doi.org/10.1080/09506608.2018.1506692

K. Zhang and S. Yu, “Preparation of wear and corrosion resistant micro-arc oxidation coating on 7N01 aluminum alloy,” Surf. Coatings Technol., vol. 388, no. February, p. 125453, 2020, doi: 10.1016/j.surfcoat.2020.125453. DOI: https://doi.org/10.1016/j.surfcoat.2020.125453

Y. Zhang et al., “Micro-structures and growth mechanisms of plasma electrolytic oxidation coatings on aluminium at different current densities,” Surf. Coatings Technol., vol. 321, pp. 236–246, 2017, doi: 10.1016/j.surfcoat.2017.04.064. DOI: https://doi.org/10.1016/j.surfcoat.2017.04.064

A. H. Poincar, J. Han, and J. Sohn, “Classification of String Solutions for the Self-Dual Einstein – Maxwell – Higgs Model,” Ann. Henri Poincaré, vol. 8, 2019, doi: 10.1007/s00023-019-00788-1. DOI: https://doi.org/10.1007/s00023-019-00788-1

X. H. Chen, F. Q. Cheng, S. L. Li, L. P. Zhou, and D. Y. Li, “Electrodeposited nickel composites containing carbon nanotubes,” Surf. Coatings Technol., vol. 155, no. 2–3, pp. 274–278, 2002, doi: 10.1016/S0257-8972(02)00118-4. DOI: https://doi.org/10.1016/S0257-8972(02)00118-4

A. F. Zimmerman, D. G. Clark, K. T. Aust, and U. Erb, “Advanced Surface Coatings: a Handbook of Surface Engineering,” Adv. Surf. Coatings a Handb. Surf. Eng., no. January, pp. 85–90, 1991, doi: 10.1007/978-94-011-3040-0. DOI: https://doi.org/10.1007/978-94-011-3040-0

M. C. Chou, M. Der Ger, S. T. Ke, Y. R. Huang, and S. T. Wu, “The Ni-P-SiC composite produced by electro-codeposition,” Mater. Chem. Phys., vol. 92, no. 1, pp. 146–151, 2005, doi: 10.1016/j.matchemphys.2005.01.021. DOI: https://doi.org/10.1016/j.matchemphys.2005.01.021

C. Sherwin, S. Bhat, and S. P. Hebbar, “Effect of plating time on surface morphology and coating thickness of nickel plating on copper surface,” J. Phase Chang. Mater., vol. 1, no. 1, pp. 79–83, 2021.

S. A. Abdel-Gawad, M. A. Sadik, and M. A. Shoeib, “Preparation and properties of a novel nano Ni-B-Sn by electroless deposition on 7075-T6 aluminum alloy for aerospace application,” J. Alloys Compd., vol. 785, pp. 1284–1292, 2019, doi: 10.1016/j.jallcom.2019.01.245. DOI: https://doi.org/10.1016/j.jallcom.2019.01.245

J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J. Alloys Compd., vol. 571, pp. 183–204, 2013, doi: 10.1016/j.jallcom.2013.03.107. DOI: https://doi.org/10.1016/j.jallcom.2013.03.107

K. Shahzad et al., “Corrosion and heat treatment study of electroless nip-ti nanocomposite coatings deposited on hsla steel,” Nanomaterials, vol. 10, no. 10, pp. 1–19, 2020, doi: 10.3390/nano10101932. DOI: https://doi.org/10.3390/nano10101932

B. Szczygieł and M. Kołodziej, “Composite Ni/Al2O3 coatings and their corrosion resistance,” Electrochim. Acta, vol. 50, no. 20, pp. 4188–4195, 2005, doi: 10.1016/j.electacta.2005.01.040. DOI: https://doi.org/10.1016/j.electacta.2005.01.040

Y. Zhou, F. Q. Xie, X. Q. Wu, W. D. Zhao, and X. Chen, “A novel plating apparatus for electrodeposition of Ni-SiC composite coatings using circulating-solution co-deposition technique,” J. Alloys Compd., vol. 699, pp. 366–377, 2017, doi: 10.1016/j.jallcom.2016.12.331. DOI: https://doi.org/10.1016/j.jallcom.2016.12.331

C. Ma, D. Zhao, H. Xia, F. Xia, Z. Ma, and T. Williams, “Microstructure and properties of Ni-SiC nanocomposites fabricated by ultrasonic-assisted electrodeposition,” Int. J. Electrochem. Sci., vol. 15, pp. 4015–4031, 2020, doi: 10.20964/2020.05.56. DOI: https://doi.org/10.20964/2020.05.56

A. V. Bondarev, S. Vorotilo, I. V. Shchetinin, E. A. Levashov, and D. V. Shtansky, “Fabrication of Ta-Si-C targets and their utilization for deposition of low friction wear resistant nanocomposite Si-Ta-C-(N) coatings intended for wide temperature range tribological applications,” Surf. Coatings Technol., vol. 359, pp. 342–353, 2019, doi: 10.1016/j.surfcoat.2018.12.030. DOI: https://doi.org/10.1016/j.surfcoat.2018.12.030

M. Surender, B. Basu, and R. Balasubramaniam, “Wear characterization of electrodeposited Ni-WC composite coatings,” Tribol. Int., vol. 37, no. 9, pp. 743–749, 2004, doi: 10.1016/j.triboint.2004.04.003. DOI: https://doi.org/10.1016/j.triboint.2004.04.003

B. Bostani, N. Parvini Ahmadi, and S. Yazdani, “Manufacturing of functionally graded Ni–ZrO2 composite coating controlled by stirring rate of the electroplating bath,” Surf. Eng., vol. 32, no. 7, pp. 495–500, 2016, doi: 10.1080/02670844.2016.1148307. DOI: https://doi.org/10.1080/02670844.2016.1148307

M. Serhan et al., “Total iron measurement in human serum with a smartphone,” AIChE Annu. Meet. Conf. Proc., vol. 2019-November, 2019, doi: 10.1039/x0xx00000x.

A. Möller and H. Hahn, “Synthesis and characterization of nanocrystalline Ni/ZrO2 composite coatings,” Nanostructured Mater., vol. 12, no. 1, pp. 259–262, 1999, doi: 10.1016/S0965-9773(99)00112-9. DOI: https://doi.org/10.1016/S0965-9773(99)00112-9

A. Ciubotariu, L. Benea, and W. Sand, “Surfasce Roughness and Topography of Ni/Micro-Sic Layers: Influence of Current Density on Electrodeposition Process,” pp. 5–10, 2015.

S. Ammara, S. Shamaila, N. zafar, A. Bokhari, and A. Sabah, “Nonenzymatic glucose sensor with high performance electrodeposited nickel/copper/carbon nanotubes nanocomposite electrode,” J. Phys. Chem. Solids, vol. 120, no. January, pp. 12–19, 2018, doi: 10.1016/j.jpcs.2018.04.015. DOI: https://doi.org/10.1016/j.jpcs.2018.04.015

L. Du, B. Xu, S. Dong, H. Yang, and Y. Wu, “Preparation, microstructure and tribological properties of nano-Al2O3/Ni brush plated composite coatings,” Surf. Coatings Technol., vol. 192, no. 2–3, pp. 311–316, 2005, doi: 10.1016/j.surfcoat.2004.06.008. DOI: https://doi.org/10.1016/j.surfcoat.2004.06.008

A. Jegan, R. Venkatesan, and R. Arunachalam, “Mechanical properties of Ni-nano-Al2O3 composite coatings on AISI 304 stainless steel by pulsed electrodeposition,” Sci. Eng. Compos. Mater., vol. 21, no. 3, pp. 351–358, 2014, doi: 10.1515/secm-2013-0071. DOI: https://doi.org/10.1515/secm-2013-0071

S. A. Lajevardi, T. Shahrabi, and J. A. Szpunar, “Tribological Properties of Functionally Graded Ni-Al 2 O 3 Nanocomposite Coating,” J. Electrochem. Soc., vol. 164, no. 6, pp. D275–D281, 2017, doi: 10.1149/2.0731706jes. DOI: https://doi.org/10.1149/2.0731706jes

Published

2021-09-01

How to Cite

[1]
H. M. Kadhim, “Microstructure Study and Morphology of Ni / Nano Al2O3 Composite Coating Synthesied by Electroless Plating”, DJES, vol. 14, no. 3, pp. 1–7, Sep. 2021.