The Integration Among E-Health Applications, Communication Networks and Sustainability: A Review
DOI:
https://doi.org/10.24237/djes.2025.18101Keywords:
E-health applications, ICT, Cybersecurity, Sustainability, Wireless Communication techniques, MIoTAbstract
Many types of e-health applications support smart cities in terms of health care. Every application is subject to requirements that must be met to be considered successful. In terms of system performance, the communication networks are responsible for meeting the requirements of e-health applications to transfer the data of applications successfully to their destinations with a focus on reliability, latency and packet loss. In addition, data protection against expected attacks is essential to maintain the data integrity of such applications. The integration of the healthcare system with promising information and communication technologies (ICTs) can lead to effective, personalised and accessible healthcare solutions, thus ultimately improving patient outcomes and the overall healthcare ecosystem. Meanwhile, sustainability has become one of the most vital conditions for any application in a smart city. In this context, this study explores the modern related literature to discover the types and the requirements of e-health applications and the available ICTs that meet these requirements. In addition, this study analyses the cybersecurity requirements related to e-health applications. Furthermore, this work engages the sustainability concept with e-health and ICTs to investigate the expected benefit of this approach. Finally, the work provides as energy consumption analysis for internet of medical things (MIoT) sensors to demonstrate the impact of energy-efficient methods used in e-health systems.
Downloads
References
[1] A. Ahad, Z. Ali, A. Mateen, et al., “A Comprehensive review on 5G-based Smart Healthcare Network Security: Taxonomy, Issues, Solutions and Future research directions,” Array, vol. 18, pp. 1–6, Jul. 2023, doi: 10.1016/j.array.2023.100290.
[2] R. S. Rathore, S. Sangwan, O. Kaiwartya, and G. Aggarwal, “Green Communication for Next-Generation Wireless Systems: Optimization Strategies, Challenges, Solutions, and Future Aspects,” 2021. doi: 10.1155/2021/5528584.
[3] Z. Pang., Z. L, T. J, et al., “Design of a terminal solution for integration of in-home health care devices and services towards the Internet-of-Things,” 2013.
[4] M. L. B. F. Lucas Medeiros Souza do Nascimento , Lucas Vacilotto Bonfati and J. José Jair Alves Mendes Junior , Hugo Valadares Siqueira and Sergio Luiz Stevan, “Sensors and Systems for Physical Rehabilitation and Health Monitoring—A Review,” Sensors Heal. Monit., pp. 1–28, 2020, doi: doi:10.3390/s20154063.
[5] D. H. Brahmbhatt, H. J. Ross, and Y. Moayedi, “Digital Technology Application for Improved Responses to Health Care Challenges: Lessons Learned From COVID-19,” 2022. doi: 10.1016/j.cjca.2021.11.014.
[6] I. K. Nti, A. F. Adekoya, B. A. Weyori, and F. Keyeremeh, “A bibliometric analysis of technology in sustainable healthcare: Emerging trends and future directions,” Decis. Anal. J., vol. 8, pp. 1–13, 2023, doi: 10.1016/j.dajour.2023.100292.
[7] M. Adil and M. K. Khan, “Emerging IoT Applications in Sustainable Smart Cities for COVID-19: Network Security and Data Preservation Challenges with Future Directions,” Sustain. Cities Soc., vol. 75, 2021, doi: 10.1016/j.scs.2021.103311.
[8] M. K. Vanteru, K. A. Jayabalaji, S. G. P, et al., “Multi-Sensor Based healthcare monitoring system by LoWPAN-based architecture,” Meas. Sensors, vol. 28, 2023, doi: 10.1016/j.measen.2023.100826.
[9] J. Ko, C. Lu, M. B. Srivastava, et al., “Wireless sensor networks for healthcare,” 2010. doi: 10.1109/JPROC.2010.2065210.
[10] K. Hameed, R. Naha, and F. Hameed, “Digital transformation for sustainable health and well-being: a review and future research directions,” Discov. Sustain., vol. 5, no. 1, 2024, doi: 10.1007/s43621-024-00273-8.
[11] B. E.-F. de Á. and J. W. Jayoung Kim, Alan S. Campbell, “Wearable biosensors for healthcare monitoring,” Nat. Biotechnol., vol. 37, no. 4, pp. 389–410, 2019, doi: 10.1038/s41587-019-0045-y.
[12] E. Teixeira, H. Fonseca, F. Diniz-Sousa, et al., “Wearable devices for physical activity and healthcare monitoring in elderly people: A critical review,” 2021. doi: 10.3390/geriatrics6020038.
[13] S. S. Samaher Al-Janabi, Ibrahim Al-Shourbaji, Mohammad Shojafar, “Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications,” Egypt. Informatics J. J., vol. 18, 2017, doi: 10.1016/j.eij.2016.11.001.
[14] C. Li, J. Wang, S. Wang, and Y. Zhang, “A review of IoT applications in healthcare,” Neurocomputing, vol. 565, 2024, doi: 10.1016/j.neucom.2023.127017.
[15] J. Asante and J. Olsson, “Using Node-Red to Connect Patient, Staff and Medical Equipment,” 2016. [Online]. Available: https://www.diva-portal.org/smash/get/diva2:949264/FULLTEXT01.pdf
[16] and S. K. Sabyasachi Dash1, Sushil Kumar Shakyawar, Mohit Sharma, “Big data in healthcare: management, analysis and future prospects,” J. Big Data, pp. 1–25, 2019, doi: 10.1186/s40537-019-0217-0 SURVEY.
[17] A. I. Paganelli, A. G. Mondéjar, A. C. da Silva, et al., “Real-time data analysis in health monitoring systems: A comprehensive systematic literature review,” 2022. doi: 10.1016/j.jbi.2022.104009.
[18] B. S. Kim, K. Il Kim, B. Shah, F. Chow, and K. H. Kim, “Wireless sensor networks for big data systems,” Sensors (Switzerland), vol. 19, no. 7, 2019. doi: 10.3390/s19071565.
[19] S. Vitabile, M. Marks, D. Stojanovic, et al., “Medical data processing and analysis for remote health and activities monitoring,” 2019. doi: 10.1007/978-3-030-16272-6_7.
[20] I. Nassra and J. V. Capella, “Data compression techniques in IoT-enabled wireless body sensor networks: A systematic literature review and research trends for QoS improvement,” Internet of Things (Netherlands), vol. 23, 2023, doi: 10.1016/j.iot.2023.100806.
[21] R. Gao, M. Jiang, and Z. Zhu, “Low-power wireless sensor design for LoRa-based distributed energy harvesting system,” Energy Reports, vol. 9, pp. 35–40, 2023, doi: 10.1016/j.egyr.2023.08.056.
[22] F. A. Almalki, S. H. Alsamhi, R. Sahal, et al., “Green IoT for Eco-Friendly and Sustainable Smart Cities: Future Directions and Opportunities,” 2023. doi: 10.1007/s11036-021-01790-w.
[23] “https://media.market.us/smart-healthcare-statistics/.”
[24] A. Rejeb, K. Rejeb, H. Treiblmaier, et al., “The Internet of Things (IoT) in healthcare: Taking stock and moving forward,” Internet of Things (Netherlands), vol. 22, 2023, doi: 10.1016/j.iot.2023.100721.
[25] G. Famitafreshi, M. S. Afaqui, and J. Melia-Segui, “Introducing Reinforcement Learning in the Wi-Fi MAC Layer to Support Sustainable Communications in e-Health Scenarios,” IEEE Access, vol. 11, pp. 126705–126723, 2023, doi: 10.1109/ACCESS.2023.3331950.
[26] J. Indumathi, A. Shankar, M. R. Ghalib, et al., “Block Chain Based Internet of Medical Things for Uninterrupted, Ubiquitous, User-Friendly, Unflappable, Unblemished, Unlimited Health Care Services (BC IoMT U6HCS),” 2020. doi: 10.1109/ACCESS.2020.3040240.
[27] C. Suraci, V. De Angelis, G. Lofaro, et al., “The Next Generation of eHealth: A Multidisciplinary Survey,” IEEE Access, vol. 10, pp. 134623–134646, 2022, doi: 10.1109/ACCESS.2022.3231446.
[28] R. Bharathi, T. Abirami, S. Dhanasekaran, et al., “Energy efficient clustering with disease diagnosis model for IoT based sustainable healthcare systems,” Sustain. Comput. Informatics Syst., vol. 28, 2020, doi: 10.1016/j.suscom.2020.100453.
[29] L. S.-K. andMaja Matijasevic, “Analysis ofQoS Requirements for e-Health Services and Mapping to Evolved Packet System QoS Classes,” Int. J. ofTelemedicine Appl., pp. 1–18, 2010, doi: 10.1155/2010/628086.
[30] H. N. S. Aldin, M. R. Ghods, F. Nayebipour, M. N. Torshiz, and M. N. T. b Hesam Nejati Sharif Aldin a,∗, Mostafa Razavi Ghods a, Farnoush Nayebipour b, “A comprehensive review ofenergy harvesting and routing strategies for IoT sensors sustainability and communication technology,” Sensors Int., vol. 5, p. 100258, Jan. 2023, doi: 10.1016/j.sintl.2023.100258.
[31] M. Cicioğlu and A. Çalhan, “SDN-based wireless body area network routing algorithm for healthcare architecture,” ETRI J., vol. 41, no. 4, pp. 452–464, 2019, doi: 10.4218/etrij.2018-0630.
[32] M. Yaghoubi, K. Ahmed, and Y. Miao, “Wireless Body Area Network (WBAN): A Survey on Architecture, Technologies, Energy Consumption, and Security Challenges,” J. Sens. Actuator Networks, vol. 11, no. 4, 2022, doi: 10.3390/jsan11040067.
[33] M. Cicioğlu and A. Çalhan, “Energy-efficient and SDN-enabled routing algorithm for wireless body area network,” Comput. Commun., vol. 160, pp. 228–239, 2020, doi: 10.1016/j.comcom.2020.06.003.
[34] R. Hussein and I. Ali, “Analysis of Energy Consumption in Wireless Body Area Network Usingmac Protocols (baseline And Smac),” 2022. doi: 10.26682/sjuod.2022.25.1.13.
[35] E. M. Abou-Nassar, A. M. Iliyasu, P. M. El-Kafrawy, et al., “DITrust Chain: Towards Blockchain-Based Trust Models for Sustainable Healthcare IoT Systems,” IEEE Access, vol. 8, pp. 111223–111238, 2020, doi: 10.1109/ACCESS.2020.2999468.
[36] I. You, G. Pau, W. Wei, and C. Fun, “Ieee access special section editorial: Green communications on wireless Networks,” IEEE Access, vol. 8, pp. 187140–187145, 2020, doi: 10.1109/ACCESS.2020.3026399.
[37] S. T. Fondoso Ossola, J. Cristeche, P. J. Chévez, D. A. Barbero, and I. Martini, “Model for the implementation of strategies for the solar energy use in a healthcare network,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 5, 2023, doi: 10.1016/j.prime.2023.100226.
[38] M. A. Albreem, A. M. Sheikh, M. H. Alsharif, M. Jusoh, and M. N. Mohd Yasin, “Green Internet of Things (GIoT): Applications, Practices, Awareness, and Challenges,” 2021. doi: 10.1109/ACCESS.2021.3061697.
[39] A. G. Olabi, K. Elsaid, K. Obaideen, et al., “Renewable energy systems: Comparisons, challenges and barriers, sustainability indicators, and the contribution to UN sustainable development goals,” Int. J. Thermofluids, vol. 20, 2023, doi: 10.1016/j.ijft.2023.100498.
[40] B. Mohandes, M. Wahbah, M. S. El Moursi, and T. H. M. El-Fouly, “Renewable energy management system: Optimum design and hourly dispatch,” 2021. doi: 10.1109/TSTE.2021.3058252.
[41] S. Mohsen, A. Zekry, K. Youssef, and M. Abouelatta, “A Self-powered Wearable Wireless Sensor System Powered by a Hybrid Energy Harvester for Healthcare Applications,” Wirel. Pers. Commun., vol. 116, no. 4, pp. 3143–3164, 2021, doi: 10.1007/s11277-020-07840-y.
[42] S. A. AlQahtani, “An Evaluation of e-Health Service Performance through the Integration of 5G IoT, Fog, and Cloud Computing,” 2023. doi: 10.3390/s23115006.
[43] L. Deng, J. Gui, T. Wang, J. Tan, and X. Li, “An intelligent hybrid MAC protocol for a sensor-based personalized healthcare system,” Digit. Commun. Networks, vol. 8, no. 2, pp. 174–185, 2022, doi: 10.1016/j.dcan.2021.08.004.
[44] D. M. G. Preethichandra, L. Piyathilaka, U. Izhar, R. Samarasinghe, and L. C. De Silva, “Wireless Body Area Networks and Their Applications - A Review,” IEEE Access, vol. 11, pp. 9202–9220, 2023, doi: 10.1109/ACCESS.2023.3239008.
[45] D. J. I. Zong Chen and L.-T. Yeh, “Data Forwarding in Wireless Body Area Networks,” 2020. doi: 10.36548/jei.2020.2.002.
[46] M. I. Younas, M. J. Iqbal, A. Aziz, and A. H. Sodhro, “Toward QoS Monitoring in IoT Edge Devices Driven Healthcare—A Systematic Literature Review,” Sensors, vol. 23, no. 21, p. 8885, 2023, doi: 10.3390/s23218885.
[47] F. Hu, X. Liu, M. Shao, D. Sui, and L. Wang, “Wireless Energy and Information Transfer in WBAN: An Overview,” 2023. doi: 10.1109/MNET.2017.1600246.
[48] E. Mbunge, B. Muchemwa, S. Jiyane, and J. Batani, “Sensors and healthcare 5.0: transformative shift in virtual care through emerging digital health technologies,” 2021. doi: 10.1016/j.glohj.2021.11.008.
[49] A. Ahad, M. Tahir, M. A. Sheikh, et al., “Technologies trend towards 5g network for smart health-care using iot: A review,” Sensors (Switzerland), vol. 20, no. 14, pp. 1–22, 2020, doi: 10.3390/s20144047.
[50] H. C. Ossebaard and L. Van Gemert-Pijnen, “EHealth and quality in health care: Implementation time,” Int. J. Qual. Heal. Care, vol. 28, no. 3, pp. 415–419, 2016, doi: 10.1093/intqhc/mzw032.
[51] H. Oh, C. Rizo, M. Enkin, and A. Jadad, “What is eHealth?: a systematic review of published definitions.,” 2005.
[52] V. Janamala, I. S. Ram, and S. B. Daram, “Realization of Green 5G Cellular Network Role in Medical Applications: Use of ChatGPT-AI,” 2023. doi: 10.1007/s10439-023-03257-3.
[53] A. Tomines, H. Readhead, A. Readhead, and S. Teutsch, “Applications of Electronic Health Information in Public Health: Uses, Opportunities and Barriers,” eGEMs (Generating Evid. Methods to Improv. patient outcomes), vol. 1, no. 2, p. 5, 2013, doi: 10.13063/2327-9214.1019.
[54] M. M. Rakers, H. J. A. van Os, K. Recourt, et al., “Perceived barriers and facilitators of structural reimbursement for remote patient monitoring, an exploratory qualitative study,” Heal. Policy Technol., vol. 12, no. 1, 2023, doi: 10.1016/j.hlpt.2022.100718.
[55] Dr. Arvind Singhal et al, “what-is-e-health [Online],available:” Accessed: Feb. 02, 2024. [Online]. Available: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-18/what-is-e-health
[56] D. M. El-Sherif and M. Abouzid, “Analysis of mHealth research: mapping the relationship between mobile apps technology and healthcare during COVID-19 outbreak,” Global. Health, vol. 18, no. 1, 2022, doi: 10.1186/s12992-022-00856-y.
[57] N. Taimoor and S. Rehman, “Reliable and Resilient AI and IoT-Based Personalised Healthcare Services: A Survey,” IEEE Access, vol. 10, pp. 535–563, 2022, doi: 10.1109/ACCESS.2021.3137364.
[58] S. Kadian, P. Kumari, S. Shukla, and R. Narayan, “Recent advancements in machine learning enabled portable and wearable biosensors,” Talanta Open, vol. 8, 2023, doi: 10.1016/j.talo.2023.100267.
[59] J. S. Meena, S. Bin Choi, S. B. Jung, and J. W. Kim, “Electronic textiles: New age of wearable technology for healthcare and fitness solutions,” Mater. Today Bio, vol. 19, 2023, doi: 10.1016/j.mtbio.2023.100565.
[60] E. Abyzova, E. Dogadina, R. D. Rodriguez, et al., “Beyond Tissue replacement: The Emerging role of smart implants in healthcare,” 2023. doi: 10.1016/j.mtbio.2023.100784.
[61] M. Paul, L. Maglaras, M. A. Ferrag, and I. Almomani, “Digitization of healthcare sector: A study on privacy and security concerns,” ICT Express, vol. 9, no. 4, pp. 571–588, 2023, doi: 10.1016/j.icte.2023.02.007.
[62] A. Gerodimos and L. Maglaras, “IoT: Communication protocols and security threats,” Internet Things Cyber-Physical Syst., no. November, pp. 1–13, 2023, doi: 10.1016/j.iotcps.2022.12.003.
[63] M. Shen, K.-L. Tsui, M. A. Nussbaum, C.-C. Ran, and J. X. Deng, “Explainable and Robust Data-Driven Machine Learning Methods for Digital Healthcare Monitoring,” Shen, Mengq, 2023.
[64] A. Danial-Saad, L. Chiari, Y. Benvenisti, S. Laufer, and M. Elboim-Gabyzon, “Healthcare Sensing and Monitoring,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11369 LNCS, 2019, pp. 96–107. doi: 10.1007/978-3-030-10752-9_5.
[65] M. A. Rahman, A. Barai, M. A. Islam, and M. M. A. Hashem, “Development of a device for remote monitoring of heart rate and body temperature,” 2012. doi: 10.1109/ICCITechn.2012.6509783.
[66] D. M. S. Rahman, “Bio-Signals and Transducers,” Short Course Biomed. Instrum., no. May, pp. 1–5, 2008.
[67] M. Wu, K. Yao, D. Li, et al., “Self-powered skin electronics for energy harvesting and healthcare monitoring,” Mater. Today Energy, vol. 21, 2021, doi: 10.1016/j.mtener.2021.100786.
[68] X. Xue, Y. Zeng, Y. Zhang, S. Lee, and Z. Yan, “A study on an application system for the sustainable development of smart healthcare in China,” IEEE Access, vol. 9, pp. 111960–111974, 2021, doi: 10.1109/ACCESS.2021.3099806.
[69] S. A. Ayoob, F. S. Alsharbaty, and A. N. Hammodat, “Design and simulation of high efficiency rectangular microstrip patch antenna using artificial intelligence for 6G era,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 21, no. 6, pp. 1234–1245, Dec. 2023, doi: 10.12928/TELKOMNIKA.v21i6.25389.
[70] S. A. Ayoob, F. S. Alsharbaty, and A. K. Alhafid, “ENHANCEMENT THE HEAVY FILE APPLICATION OF 802.16e CELL USING INTRA-SITE COMP IN UPLINK STREAM,” J. Eng. Sci. Technol., vol. 17, no. 3, pp. 1721–1733, 2022.
[71] W. S. Admass, Y. Y. Munaye, and A. A. Diro, “Cyber security: State of the art, challenges and future directions,” 2024. doi: 10.1016/j.csa.2023.100031.
[72] M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Towards insighting cybersecurity for healthcare domains: A comprehensive review of recent practices and trends,” 2023. doi: 10.1016/j.csa.2023.100016.
[73] Q. I. Ali and F. S. Alsharbaty, “Challenges, Trends and Solutions for Communication Networks and Cyber-Security in Smart Grid,” Curr. Chinese Eng. Sci., vol. 2, no. 1, Jan. 2022, doi: 10.2174/2665998002666220114145027.
[74] M. Alshehri, “Blockchain-assisted cyber security in medical things using artificial intelligence,” Electron. Res. Arch., vol. 31, no. 2, pp. 708–728, 2023, doi: 10.3934/era.2023035.
[75] M. Y. Shakor, N. M. S. Surameery, and Z. N. Khlaif, “Hybrid Security Model for Medical Image Protection in Cloud,” Diyala J. Eng. Sci., vol. 16, no. 1, pp. 68–77, 2023, doi: 10.24237/djes.2023.16107.
[76] S. M. Rajagopal, M. Supriya, and R. Buyya, “FedSDM: Federated learning based smart decision making module for ECG data in IoT integrated Edge–Fog–Cloud computing environments,” Internet of Things (Netherlands), vol. 22, 2023, doi: 10.1016/j.iot.2023.100784.
[77] M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “5G technology for healthcare: Features, serviceable pillars, and applications,” 2023. doi: 10.1016/j.ipha.2023.04.001.
[78] J. Salazar, WIRELESS NETWORKS. 2017.
[79] W. T. M. K. Jack L. Burbank, Julia Andrusenko, Jared S. Everett, Wireless Networking Understanding Internetworking Challenges. 2013.
[80] E. Nemati, M. J. Deen, and T. Mondal, “A wireless wearable ECG sensor for long-term applications,” 2012. doi: 10.1109/MCOM.2012.6122530.
[81] M. M. Alam and E. Ben Hamida, “Strategies for Optimal MAC Parameters Tuning in IEEE 802.15.6 Wearable Wireless Sensor Networks,” 2015. doi: 10.1007/s10916-015-0277-4.
[82] M. Z. C. and Y. M. J. Moh. Khalid Hasan , Md. Shahjalal, “Real-Time Healthcare Data Transmission for Remote Patient Monitoring in Patch-Based Hybrid OCC/BLE Networks,” sensors, pp. 1–23, 2019, doi: 10.3390/s19051208.
[83] M. M. Alam and E. Ben Hamida, “Surveying wearable human assistive technology for life and safety critical applications: Standards, challenges and opportunities,” Sensors (Switzerland), vol. 14, no. 5, pp. 9153–9209, 2014, doi: 10.3390/s140509153.
[84] B. Purvis, Y. Mao, and D. Robinson, “Three pillars of sustainability: in search of conceptual origins,” Sustain. Sci., vol. 14, no. 3, pp. 681–695, 2019, doi: 10.1007/s11625-018-0627-5.
[85] F. Masood, W. U. Khan, M. S. Alshehri, A. Alsumayt, and J. Ahmad, “Energy efficiency considerations in software-defined wireless body area networks,” Eng. Reports, vol. 6, no. 3, 2023, doi: 10.1002/eng2.12841.
[86] A. A. Al-jabar Hashim, A. M. Abbas, L. Abed, A. Al-Samari, and A. Akroot, “Evaluation of Methods to Enhance the Ocean Wave Energy Convertor Performance,” Diyala J. Eng. Sci., vol. 16, no. 4, pp. 101–109, 2023, doi: 10.24237/djes.2023.160408.
[87] A. Ali, M. Ashfaq, A. Qureshi, et al., “Smart Detecting and Versatile Wearable Electrical Sensing Mediums for Healthcare,” Sensors, vol. 23, no. 14, 2023, doi: 10.3390/s23146586.
[88] G. Famitafreshi, M. S. Afaqui, and J. Melià-Seguí, “Enabling Energy Harvesting-Based Wi-Fi System for an e-Health Application: A MAC Layer Perspective,” Sensors, vol. 22, no. 10, 2022, doi: 10.3390/s22103831.
[89] L. Olatomiwa, R. Blanchard, S. Mekhilef, and D. Akinyele, “Hybrid renewable energy supply for rural healthcare facilities: An approach to quality healthcare delivery,” 2018. doi: 10.1016/j.seta.2018.09.007.
[90] K. L. Ketshabetswe, A. M. Zungeru, B. Mtengi, C. K. Lebekwe, and S. R. S. Prabaharan, “Data Compression Algorithms for Wireless Sensor Networks: A Review and Comparison,” IEEE Access, vol. 9, pp. 136872–136891, 2021, doi: 10.1109/ACCESS.2021.3116311.
[91] L. H. Wang, Z. H. Zhang, W. P. Tsai, P. C. Huang, and P. A. R. Abu, “Low-Power Multi-Lead Wearable ECG System With Sensor Data Compression,” IEEE Sens. J., vol. 22, no. 18, pp. 18045–18055, 2022, doi: 10.1109/JSEN.2022.3195501.
[92] L. K. Almajmaie, W. A. Mahmood, A. R. Raheem, S. Albawi, and O. Bayat, “Efficient Routing in VANETs Using MRRP Algorithm,” Diyala J. Eng. Sci., vol. 16, no. 3, pp. 134–146, 2023, doi: 10.24237/djes.2023.16311.
[93] G. Gardašević, K. Katzis, D. Bajić, and L. Berbakov, “Emerging wireless sensor networks and internet of things technologies—foundations of smart healthcare,” Sensors (Switzerland), vol. 20, no. 13, pp. 1–30, 2020, doi: 10.3390/s20133619.
[94] S. Afzal, N. Mehran, Z. A. Ourimi, et al., “A Survey on Energy Consumption and Environmental Impact of Video Streaming,” J. ACM, vol. 1, no. 1, pp. 1–34, 2024, [Online]. Available: https://arxiv.org/abs/2401.09854v1
[95] J. Uthayakumar, T. Vengattaraman, and ..., “A survey on data compression techniques: From the perspective of data quality, coding schemes, data type and applications,” J. King Saud …, vol. 33, pp. 119–140, 2018, doi: 10.1016/j.jksuci.2018.05.006.
[96] T. Sanislav, G. D. Mois, S. Zeadally, and S. C. Folea, “Energy Harvesting Techniques for Internet of Things (IoT),” 2021. doi: 10.1109/ACCESS.2021.3064066.
[97] M. S. A. and J. M.-S. Golshan Famitafreshi, “A Comprehensive Review on Energy Harvesting Integration in IoT Systems from MAC Layer Perspective: Challenges and Opportunities,” Sensors, vol. 21, 2021, doi: https://doi.org/10.3390/s21093097.
[98] R. M. H. and A. S. M. K. Ali Fathel Rasheed, “Design and Implementation of an Interactive Embedded System as a Low-Cost Remotely Operated Vehicle for Underwater Applications,” Diyala J. Eng. Sci., vol. 17, no. 3, pp. 173–198, 2024, doi: 10.24237/djes.2024.17312.
[99] A. Althoubi, R. Alshahrani, and H. Peyravi, “Delay analysis in iot sensor networks†,” Sensors, vol. 21, no. 11, 2021, doi: 10.3390/s21113876.
[100] S. Shukla, M. F. Hassan, M. K. Khan, L. T. Jung, and A. Awang, “An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment,” PLoS One, vol. 14, no. 11, 2019, doi: 10.1371/journal.pone.0224934.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Amina Gh. Abdullah, Mohammad Tariq Yaseen , Firas S. Alsharbaty

This work is licensed under a Creative Commons Attribution 4.0 International License.