Non-Terrestrial Networks Based on Non-Orthogonal Multiple Access Towards 6G
Keywords:
Terahertz THz, Multiple access techniques, Non-orthogonal multiple access (NOMA), High altitude platform (HAP), SatelliteAbstract
Until now many regions around the world are still uncovered by cellular terrestrial mobile system services due to the lack of economic feasibility as well as the difficulty of introducing such services. Conversely, a large geographic region can be covered by using only a single satellite, so it is worthwhile to extend the actual terrestrial services using satellite system. The new hybrid integrated “terrestrial-satellite” cellular system, known under the name of Non-Terrestrial Networks (NTN), will see the light with the support of future 6G technology. It is expected that 6G cellular mobile system will play the role of integrating terrestrial, aerial, maritime, and space communications into a universal network that could support a massive number of terminals with ultra-low latency. For the realization of the NTN system, new technologies should be introduced at the level of terrestrial cellular network, arial network, and satellite network. One of these promising technologies is represented by an efficient multiplexing technique known under the name of non-orthogonal multiple access (NOMA). With this technique, multiple users can be served on a single time-frequency resource block by using the concepts of superposition coding at the transmitter and successive interference cancellation (SIC) at the receiver. Moreover, NOMA has an achievable performance gain in terms of spectral efficiency over the traditional orthogonal multiple access (OMA) technique. Evaluation of a NOMA-based NTN system supported by 6G technologies in terms of system parameters and channel capacity represent the main objective of this paper.
Downloads
References
H. Luo et al., “Very-Low-Earth-Orbit satellite networks for 6G,” Communications of HUAWEI RESEARCH, 2022.
X. Zhu and C. Jiang, “Integrated Satellite-Terrestrial Networks Toward 6G: Architectures, Applications, and Challenges,” IEEE Internet Things J, vol. 9, no. 1, 2022, doi: 10.1109/JIOT.2021.3126825. DOI: https://doi.org/10.1109/JIOT.2021.3126825
3GPP, “3GPP TR 21.916 V0.4.0 (2020-03): Release 16 Description; Summary of Rel-16 Work Items.,” Sophia Antipolis, Mar. 2020. Accessed: Jan. 05, 2024. [Online]. Available: http://www.3gpp.org/ftp//Specs/archive/21_series/21.916/21916-040.zip
3GPP, “Technical Report 3GPP TR 38.811 V15.0.0 (2018-06): Study on New Radio (NR) to support non-terrestrial networks (Release 15),” Valbonne, Jun. 2018. Accessed: Jan. 05, 2024. [Online]. Available: http://www.3gpp.org/ftp//Specs/archive/38_series/38.811/ 38811-f00.zip
Z. Xiao et al., “Antenna Array Enabled Space/Air/Ground Communications and Networking for 6G,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 10, 2022, doi: 10.1109/JSAC.2022.3196320. DOI: https://doi.org/10.1109/JSAC.2022.3196320
Z. Jia, M. Sheng, J. Li, and Z. Han, “Toward data collection and transmission in 6G space–air–ground integrated networks: Cooperative HAP and LEO satellite schemes,” IEEE Internet Things J, vol. 9, no. 13, pp. 10516–10528, 2021. DOI: https://doi.org/10.1109/JIOT.2021.3121760
Y. Yan, H. Xu, N. Zhang, G. Han, and M. Liu, “Dynamic Divide Grouping Non-Orthogonal Multiple Access in Terrestrial-Satellite Integrated Network,” Sensors, vol. 21, no. 18, p. 6199, 2021. DOI: https://doi.org/10.3390/s21186199
P. K. Sharma, P. K. Upadhyay, D. B. da Costa, P. S. Bithas, and A. G. Kanatas, “Performance analysis of overlay spectrum sharing in hybrid satellite-terrestrial systems with secondary network selection,” IEEE Trans Wirel Commun, vol. 16, no. 10, pp. 6586–6601, 2017. DOI: https://doi.org/10.1109/TWC.2017.2725950
M. Giordani and M. Zorzi, “Non-terrestrial networks in the 6G era: Challenges and opportunities,” IEEE Netw, vol. 35, no. 2, pp. 244–251, 2020. DOI: https://doi.org/10.1109/MNET.011.2000493
L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation,” IEEE Trans Wirel Commun, vol. 15, no. 12, pp. 8580–8594, 2016. DOI: https://doi.org/10.1109/TWC.2016.2616310
A. J. Ramadhan, “Implementation of 5G FBMC PHYDYAS prototype filter,” International Journal of Applied Engineering Research, vol. 12, no. 23, 2017.
A. M. Ahmed, S. A. Hasan, and S. A. Majeed, “5G mobile systems, challenges and technologies: A survey,” J. Theor. Appl. Inf. Technol, vol. 97, no. 11, pp. 3214–3226, 2019.
D. Demmer, R. Zakaria, J.-B. Doré, R. Gerzaguet, and D. le Ruyet, “Filter-bank OFDM transceivers for 5G and beyond,” in 2018 52nd Asilomar Conference on Signals, Systems, and Computers, IEEE, 2018, pp. 1057–1061. DOI: https://doi.org/10.1109/ACSSC.2018.8645104
S. A. A. Hakeem, H. H. Hussein, and H. Kim, “Vision and research directions of 6G technologies and applications,” Journal of King Saud University-Computer and Information Sciences, 2022.
M. Hussain and H. Rasheed, “Nonorthogonal multiple access for next-generation mobile networks: A technical aspect for research direction,” Wirel Commun Mob Comput, vol. 2020, 2020. DOI: https://doi.org/10.1155/2020/8845371
X. Yan, H. Xiao, K. An, G. Zheng, and S. Chatzinotas, “Ergodic Capacity of NOMA-Based Uplink Satellite Networks with Randomly Deployed Users,” IEEE Syst J, vol. 14, no. 3, 2020, doi: 10.1109/JSYST.2019.2934358. DOI: https://doi.org/10.1109/JSYST.2019.2934358
Y. Cai, Z. Qin, F. Cui, G. Y. Li, and J. A. McCann, “Modulation and Multiple Access for 5G Networks,” IEEE Communications Surveys and Tutorials, vol. 20, no. 1. 2018. doi: 10.1109/COMST.2017.2766698. DOI: https://doi.org/10.1109/COMST.2017.2766698
Z. Ding, M. Xu, Y. Chen, M. Peng, and H. V. Poor, “Embracing non-orthogonal multiple access in future wireless networks,” Frontiers of Information Technology & Electronic Engineering, vol. 19, no. 3, pp. 322–339, 2018. DOI: https://doi.org/10.1631/FITEE.1800051
T. Wen and P. Zhu, “5G: A technology vision,” Huawei. http://www. huawei. com/en/abouthuawei/publications/winwin-magazine/hw-329304. htm, 2013.
N. T. T. Docomo, “5G radio access: Requirements, concept and technologies,” white paper, Jul, 2014.
D. Rhodes et al., “5G innovation opportunities--A discussion paper,” 2016.
Z. Wei, J. Yuan, D. W. K. Ng, M. Elkashlan, and Z. Ding, “A survey of downlink non-orthogonal multiple access for 5G wireless communication networks,” arXiv preprint arXiv:1609.01856, 2016.
Z. Ding et al., “Application of non-orthogonal multiple access in LTE and 5G networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185–191, 2017. DOI: https://doi.org/10.1109/MCOM.2017.1500657CM
X. Zhu, C. Jiang, L. Kuang, N. Ge, and J. Lu, “Non-Orthogonal Multiple Access Based Integrated Terrestrial-Satellite Networks,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, 2017, doi: 10.1109/JSAC.2017.2724478. DOI: https://doi.org/10.1109/JSAC.2017.2724478
Q. He, Z. Xiang, and P. Ren, “A coordinated non-orthogonal multiple access strategy for integrated terrestrial-satellite networks,” PLoS One, vol. 16, no. 3, p. e0248173, 2021. DOI: https://doi.org/10.1371/journal.pone.0248173
Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2181–2195, 2017. DOI: https://doi.org/10.1109/JSAC.2017.2725519
J. S. Biyoghe and V. Balyan, “Noma application to satellite communication networks for 5g: A comprehensive survey of existing studies,” Journal of Communications, vol. 16, no. 6, 2021, doi: 10.12720/jcm.16.6.217-227. DOI: https://doi.org/10.12720/jcm.16.6.217-227
V. Singh, P. K. Upadhyay, and M. Lin, “On the Performance of NOMA-Assisted Overlay Multiuser Cognitive Satellite-Terrestrial Networks,” IEEE Wireless Communications Letters, vol. 9, no. 5, 2020, doi: 10.1109/LWC.2020.2963981. DOI: https://doi.org/10.1109/LWC.2020.2963981
N. Ye, J. Yu, A. Wang, and R. Zhang, “Help from space: grant-free massive access for satellite-based IoT in the 6G era,” Digital Communications and Networks, vol. 8, no. 2, 2022, doi: 10.1016/j.dcan.2021.07.008. DOI: https://doi.org/10.1016/j.dcan.2021.07.008
S. B. R. Tirmizi, Y. Chen, S. Lakshminarayana, W. Feng, and A. A. Khuwaja, “Hybrid Satellite–Terrestrial Networks toward 6G: Key Technologies and Open Issues,” Sensors, vol. 22, no. 21. 2022. doi: 10.3390/s22218544. DOI: https://doi.org/10.3390/s22218544
Y. Bi et al., “Software Defined Space-Terrestrial Integrated Networks: Architecture, Challenges, and Solutions,” IEEE Netw, vol. 33, no. 1, 2019, doi: 10.1109/MNET.2018.1800193. DOI: https://doi.org/10.1109/MNET.2018.1800193
L. Bai, L. Zhu, X. Zhang, W. Zhang, and Q. Yu, “Multi-satellite relay transmission in 5G: Concepts, techniques, and challenges,” IEEE Netw, vol. 32, no. 5, 2018, doi: 10.1109/MNET.2018.1800038. DOI: https://doi.org/10.1109/MNET.2018.1800038
F. Rinaldi et al., “Non-terrestrial networks in 5G & beyond: A survey,” IEEE Access, vol. 8. pp. 165178–165200, 2020. doi: 10.1109/ACCESS.2020.3022981. DOI: https://doi.org/10.1109/ACCESS.2020.3022981
J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, “Space-air-ground integrated network: A survey,” IEEE Communications Surveys and Tutorials, vol. 20, no. 4. pp. 2714–2741, 2018. doi: 10.1109/COMST.2018.2841996. DOI: https://doi.org/10.1109/COMST.2018.2841996
A. M.k. and M. R. Bhatnagar, “Beamforming and combining in hybrid satellite-terrestrial cooperative systems,” IEEE Communications Letters, vol. 18, no. 3, 2014, doi: 10.1109/LCOMM.2014.012214.132738. DOI: https://doi.org/10.1109/LCOMM.2014.012214.132738
X. Artiga et al., “Shared access satellite-terrestrial reconfigurable backhaul network enabled by smart antennas at MmWave band,” IEEE Netw, vol. 32, no. 5, 2018, doi: 10.1109/MNET.2018.1800030. DOI: https://doi.org/10.1109/MNET.2018.1800030
A. Traspadini, M. Giordani, and M. Zorzi, “UAV/HAP-Assisted Vehicular Edge Computing in 6G: Where and What to Offload?,” in 2022 Joint European Conference on Networks and Communications and 6G Summit, EuCNC/6G Summit 2022, 2022. doi: 10.1109/EuCNC/6GSummit54941.2022.9815734. DOI: https://doi.org/10.1109/EuCNC/6GSummit54941.2022.9815734
M. M. Azari et al., “Evolution of Non-Terrestrial Networks from 5G to 6G: A Survey,” IEEE Communications Surveys and Tutorials, vol. 24, no. 4, 2022, doi: 10.1109/COMST.2022.3199901. DOI: https://doi.org/10.1109/COMST.2022.3199901
P. D. Arapoglou, S. Cioni, E. Re, and A. Ginesi, “Direct Access to 5G New Radio User Equipment from NGSO Satellites in Millimeter Waves,” in 2020 10th Advanced Satellite Multimedia Systems Conference and the 16th Signal Processing for Space Communications Workshop, ASMS/SPSC 2020, 2020. doi: 10.1109/ASMS/SPSC48805.2020.9268928. DOI: https://doi.org/10.1109/ASMS/SPSC48805.2020.9268928
3GPP, “3GPP TS 24.502 version 15.0.0 Release 15: 5G; Access to the 3GPP 5G Core Network (5GCN) via non-3GPP access networks,” Sophia Antipolis, 2018. Accessed: Jan. 05, 2024. [Online]. Available: http://www.etsi.org/standards-search
Z. Zhang et al., “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 28–41, 2019. DOI: https://doi.org/10.1109/MVT.2019.2921208
X. Liu, K. Y. Lam, F. Li, J. Zhao, L. Wang, and T. S. Durrani, “Spectrum Sharing for 6G Integrated Satellite-Terrestrial Communication Networks Based on NOMA and CR,” IEEE Netw, vol. 35, no. 4, 2021, doi: 10.1109/MNET.011.2100021. DOI: https://doi.org/10.1109/MNET.011.2100021
M. Sheng et al., “Coverage enhancement for 6G satellite-terrestrial integrated networks: performance metrics, constellation configuration and resource allocation,” Science China Information Sciences, vol. 66, no. 3. 2023. doi: 10.1007/s11432-022-3636-1. DOI: https://doi.org/10.1007/s11432-022-3636-1
X. Lin, S. Rommer, S. Euler, E. A. Yavuz, and R. S. Karlsson, “5G from Space: An Overview of 3GPP Non-Terrestrial Networks,” IEEE Communications Standards Magazine, vol. 5, no. 4, 2021, doi: 10.1109/MCOMSTD.011.2100038. DOI: https://doi.org/10.1109/MCOMSTD.011.2100038
A. H. Arani, P. Hu, and Y. Zhu, “HAPS-UAV-Enabled Heterogeneous Networks: A Deep Reinforcement Learning Approach,” IEEE Open Journal of the Communications Society, vol. 4, 2023, doi: 10.1109/OJCOMS.2023.3296378. DOI: https://doi.org/10.1109/OJCOMS.2023.3296378
M. Ansarifard, N. Mokari, M. Javan, H. Saeedi, and E. A. Jorswieck, “AI-based Radio and Computing Resource Allocation and Path Planning in NOMA NTNs: AoI Minimization under CSI Uncertainty,” arXiv preprint arXiv:2305.00780, 2023. DOI: https://doi.org/10.36227/techrxiv.23734035
Amitabha Ghosh and Frank Hsieh, “HAPS: Connect the unconnected,” Finland, Sep. 2020. Accessed: Jan. 05, 2024. [Online]. Available: https://www.bell-labs.com/institute/white-papers/haps-connect-unconnected/
S. Zhang, J. Liu, H. Guo, M. Qi, and N. Kato, “Envisioning Device-to-Device Communications in 6G,” IEEE Netw, vol. 34, no. 3, 2020, doi: 10.1109/MNET.001.1900652. DOI: https://doi.org/10.1109/MNET.001.1900652
A. M. Ahmed, S. A. Majeed, and Y. S. Dawood, “A Survey of 6G Mobile Systems, Enabling Technologies, and Challenges,” International Journal of Electrical and Electronic Engineering & Telecommunications, vol. 12, no. 1, pp. 1–21, 2023, doi: 10.18178/ijeetc.12.1.1-21. DOI: https://doi.org/10.18178/ijeetc.12.1.1-21
T. Li, J. Yuan, and M. Torlak, “Network throughput optimization for random access narrowband cognitive radio internet of things (NB-CR-IoT),” IEEE Internet Things J, vol. 5, no. 3, 2018, doi: 10.1109/JIOT.2017.2789217. DOI: https://doi.org/10.1109/JIOT.2017.2789217
L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5G,” IEEE communications surveys & tutorials, vol. 20, no. 3, pp. 2294–2323, 2018. DOI: https://doi.org/10.1109/COMST.2018.2835558
A. Benjebbour, “An overview of non-orthogonal multiple access,” ZTE Commun, vol. 15, no. S1, pp. 21–30, 2017.
F. Demers, H. Yanikomeroglu, and M. St-Hilaire, “A survey of opportunities for free space optics in next generation cellular networks,” in 2011 Ninth annual communication networks and services research conference, IEEE, 2011, pp. 210–216. DOI: https://doi.org/10.1109/CNSR.2011.38
Y. Li, M. Pióro, and V. Angelakisi, “Design of cellular backhaul topology using the FSO technology,” in 2013 2nd International Workshop on Optical Wireless Communications (IWOW), IEEE, 2013, pp. 6–10. DOI: https://doi.org/10.1109/IWOW.2013.6777766
A. M. Ahmed, S. A. Majeed, and Y. S. Dawood, “6G THz-band facing propagation and atmospheric absorption losses,” in 4th International Conference on Communication Engineering and Computer Science (CIC-COCOS’22), Erbil: Cihan University, Mar. 2022, pp. 162–168.
M. Banafaa et al., “6G Mobile Communication Technology: Requirements, Targets, Applications, Challenges, Advantages, and Opportunities,” Alexandria Engineering Journal, vol. 64. 2023. doi: 10.1016/j.aej.2022.08.017. DOI: https://doi.org/10.1016/j.aej.2022.08.017
D. Wang, M. Giordani, M. S. Alouini, and M. Zorzi, “The Potential of Multilayered Hierarchical Nonterrestrial Networks for 6G: A Comparative Analysis among Networking Architectures,” IEEE Vehicular Technology Magazine, vol. 16, no. 3, 2021, doi: 10.1109/MVT.2021.3085168. DOI: https://doi.org/10.1109/MVT.2021.3085168
F. Yamashita, M. Matsui, H. Kano, and J. Abe, “Multi-layer Non-terrestrial Network for Beyond 5G/6G Mobile Communications,” NTT Technical Review, vol. 21, no. 8, 2023, doi: 10.53829/ntr202308fa2. DOI: https://doi.org/10.53829/ntr202308fa2
K. Tekbiyik, A. R. Ekti, G. K. Kurt, A. Gorcin, and H. Yanikomeroglu, “A Holistic Investigation of Terahertz Propagation and Channel Modeling toward Vertical Heterogeneous Networks,” IEEE Communications Magazine, vol. 58, no. 11, 2020, doi: 10.1109/MCOM.001.2000302. DOI: https://doi.org/10.1109/MCOM.001.2000302
M. M. Azari, S. Solanki, S. Chatzinotas, and M. Bennis, “THz-Empowered UAVs in 6G: Opportunities, Challenges, and Trade-offs,” IEEE Communications Magazine, vol. 60, no. 5, 2022, doi: 10.1109/MCOM.001.2100889. DOI: https://doi.org/10.1109/MCOM.001.2100889
5G-PPP, “SaT5G: Satellite and Terrestrial Network for 5G.” Accessed: Nov. 25, 2023. [Online]. Available: https://5g-ppp.eu/sat5g/
K. Guo, Z. Ji, B. Yang, and X. Wang, “NOMA-based Integrated Satellite-Terrestrial Multi-relay Networks with Hardware Impairments and Partial Relay Selection Scheme,” in International Conference on Communication Technology Proceedings, ICCT, 2019. doi: 10.1109/ICCT46805.2019.8947073. DOI: https://doi.org/10.1109/ICCT46805.2019.8947073
L. Liu, R. Zhang, and K. C. Chua, “Wireless information transfer with opportunistic energy harvesting,” IEEE Trans Wirel Commun, vol. 12, no. 1, 2013, doi: 10.1109/TWC.2012.113012.120500. DOI: https://doi.org/10.1109/TWC.2012.113012.120500
Z. Yang, Z. Ding, P. Fan, and N. Al-Dhahir, “A General Power Allocation Scheme to Guarantee Quality of Service in Downlink and Uplink NOMA Systems,” IEEE Trans Wirel Commun, vol. 15, no. 11, 2016, doi: 10.1109/TWC.2016.2599521. DOI: https://doi.org/10.1109/TWC.2016.2599521
T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, and D. Zhang, “A Survey on Green 6G Network: Architecture and Technologies,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2957648. DOI: https://doi.org/10.1109/ACCESS.2019.2957648
K. Higuchi and A. Benjebbour, “Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access,” IEICE Transactions on Communications, vol. 98, no. 3, pp. 403–414, 2015. DOI: https://doi.org/10.1587/transcom.E98.B.403
3GPP T R 22.822, “Study on using Satellite Access in 5G,” 2020.
Z. yu Na, X. tong Li, X. Liu, Z. an Deng, and X. ming Liu, “A brief review of several multi-carrier transmission techniques for 5G and future mobile networks,” in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 2018. doi: 10.1007/978-3-319-66628-0_54. DOI: https://doi.org/10.1007/978-3-319-66628-0_54
B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process Mag, vol. 28, no. 3, pp. 92–112, 2011. DOI: https://doi.org/10.1109/MSP.2011.940267
N. Ye, H. Han, L. Zhao, and A. Wang, “Uplink nonorthogonal multiple access technologies toward 5G: A survey,” Wirel Commun Mob Comput, vol. 2018, 2018. DOI: https://doi.org/10.1155/2018/6187580
M. Delivarable, “D2. 4: Proposed solutions for new radio access.” March, 2015.
H. Lin, “Filter bank OFDM: A new way of looking at FBMC,” in 2015 IEEE International Conference on Communication Workshop (ICCW), IEEE, 2015, pp. 1077–1082. DOI: https://doi.org/10.1109/ICCW.2015.7247320
T. Ihalainen, T. H. Stitz, and M. Renfors, “Efficient per-carrier channel equalizer for filter bank based multicarrier systems,” in 2005 IEEE International Symposium on Circuits and Systems, IEEE, 2005, pp. 3175–3178.
P. Kansal and A. K. Shankhwar, “FBMC vs OFDM Waveform Contenders for 5G Wireless Communication System,” Wireless Engineering and Technology, vol. 08, no. 04, 2017, doi: 10.4236/wet.2017.84005. DOI: https://doi.org/10.4236/wet.2017.84005
S. Jo and J. S. Seo, “Tx scenario analysis of FBMC based LDM system,” ICT Express, vol. 1, no. 3, 2015, doi: 10.1016/j.icte.2015.11.001. DOI: https://doi.org/10.1016/j.icte.2015.11.001
M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization techniques for orthogonal frequency division multiple access (OFDMA): A tutorial review,” Proceedings of the IEEE, vol. 95, no. 7, pp. 1394–1427, 2007. DOI: https://doi.org/10.1109/JPROC.2007.897979
A. N. Ibrahim and M. F. L. Abdullah, “The potential of FBMC over OFDM for the future 5G mobile communication technology,” in AIP Conference Proceedings, AIP Publishing LLC, 2017, p. 020001. DOI: https://doi.org/10.1063/1.5002019
X. Yu, Y. Guanghui, Y. Xiao, Y. Zhen, X. Jun, and G. Bo, “FB-OFDM: A novel multicarrier scheme for 5G,” in EUCNC 2016 - European Conference on Networks and Communications, 2016. doi: 10.1109/EuCNC.2016.7561046. DOI: https://doi.org/10.1109/EuCNC.2016.7561046
D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge university press, 2005. DOI: https://doi.org/10.1017/CBO9780511807213
R. C. Kizilirmak and H. K. Bizaki, “Non-orthogonal multiple access (NOMA) for 5G networks,” Towards 5G Wireless Networks-A Physical Layer Perspective, vol. 83, pp. 83–98, 2016. DOI: https://doi.org/10.5772/66048
S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 721–742, 2016. DOI: https://doi.org/10.1109/COMST.2016.2621116
M. S. Ali, H. Tabassum, and E. Hossain, “Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems,” IEEE access, vol. 4, pp. 6325–6343, 2016. DOI: https://doi.org/10.1109/ACCESS.2016.2604821
S. Ali, E. Hossain, and D. I. Kim, “Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation,” IEEE access, vol. 5, pp. 565–577, 2016. DOI: https://doi.org/10.1109/ACCESS.2016.2646183
S. M. Islam, M. Zeng, and O. A. Dobre, “NOMA in 5G systems: Exciting possibilities for enhancing spectral efficiency,” arXiv preprint arXiv:1706.08215, 2017.
X. Lin et al., “5G new radio evolution meets satellite communications: Opportunities, challenges, and solutions,” 5G and Beyond, pp. 517–531, 2021. DOI: https://doi.org/10.1007/978-3-030-58197-8_18
T. Rahman, F. Khan, I. Khan, N. Ullah, M. M. Althobaiti, and F. Alassery, “NOMA and OMA-Based Massive MIMO and Clustering Algorithms for beyond 5G IoT Networks,” Wirel Commun Mob Comput, vol. 2021, 2021, doi: 10.1155/2021/6522089. DOI: https://doi.org/10.1155/2021/6522089
A. Haddad, D. Slimani, A. Nafkha, and F. Bader, “Users’ Power Multiplexing Limitations in NOMA System over Gaussian Channel,” in Proceedings - 2020 International Conference on Wireless Networks and Mobile Communications, WINCOM 2020, 2020. doi: 10.1109/WINCOM50532.2020.9272469. DOI: https://doi.org/10.1109/WINCOM50532.2020.9272469
S. M. R. Islam, M. Zeng, O. A. Dobre, and K. Kwak, “Nonorthogonal Multiple Access (NOMA): How It Meets 5G and Beyond,” in Wiley 5G Ref, 2019. doi: 10.1002/9781119471509.w5gref032. DOI: https://doi.org/10.1002/9781119471509.w5GRef032
B. Feng et al., “HetNet: A Flexible Architecture for Heterogeneous Satellite-Terrestrial Networks,” IEEE Netw, vol. 31, no. 6, 2017, doi: 10.1109/MNET.2017.1600330. DOI: https://doi.org/10.1109/MNET.2017.1600330
K. An, X. Yan, T. Liang, and W. Lu, “NOMA Based Satellite Communication Networks: Architectures, Techniques and Challenges,” in International Conference on Communication Technology Proceedings, ICCT, 2019. doi: 10.1109/ICCT46805.2019.8947170. DOI: https://doi.org/10.1109/ICCT46805.2019.8947170
P. Prasad, M. K. Arti, and A. Jain, “Performance Analysis of NOMA Integrated Hybrid Satellite Terrestrial Communication System using ML,” Jun. 2022. doi: https://doi.org/10.21203/rs.3.rs-1746621/v1. DOI: https://doi.org/10.21203/rs.3.rs-1746621/v1
X. Tang, K. An, K. Guo, Y. Huang, and S. Wang, “Outage analysis of non-orthogonal multiple access-based integrated satellite-terrestrial relay networks with hardware impairments,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2944406. DOI: https://doi.org/10.1109/ACCESS.2019.2944406
Mounir Belattar, Soumali Chaabane, and Mabrouk Atrouche, “Performance of NOMA-Based Downlink Satellite-Ground Network under Nakagami-m Fading Distribution,” in Fifth International Conference on Electrical Engineering And Control Applications ICEECA’22, Khanchela, Algeria, Nov. 2022.
X. Yan, H. Xiao, K. An, G. Zheng, and W. Tao, “Hybrid satellite terrestrial relay networks with cooperative non-orthogonal multiple access,” IEEE Communications Letters, vol. 22, no. 5, 2018, doi: 10.1109/LCOMM.2018.2815610. DOI: https://doi.org/10.1109/LCOMM.2018.2815610
S. Xie, B. Zhang, D. Guo, and B. Zhao, “Performance analysis and power allocation for noma-based hybrid satellite-terrestrial relay networks with imperfect channel state information,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2942167. DOI: https://doi.org/10.1109/ACCESS.2019.2942167
X. Zhang et al., “Performance Analysis of NOMA-Based Cooperative Spectrum Sharing in Hybrid Satellite-Terrestrial Networks,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2956185. DOI: https://doi.org/10.1109/ACCESS.2019.2956185
Y. He, J. Jiao, X. Liang, S. Wu, Y. Wang, and Q. Zhang, “Outage performance of millimeter-wave band NOMA downlink system in satellite-based IoT,” in 2019 IEEE/CIC International Conference on Communications in China, ICCC 2019, 2019. doi: 10.1109/ICCChina.2019.8855841. DOI: https://doi.org/10.1109/ICCChina.2019.8855841
X. Zhu, C. Jiang, L. Yin, L. Kuang, N. Ge, and J. Lu, “Cooperative Multigroup Multicast Transmission in Integrated Terrestrial-Satellite Networks,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 5, 2018, doi: 10.1109/JSAC.2018.2832780. DOI: https://doi.org/10.1109/JSAC.2018.2832780
Z. Lin, M. Lin, J. B. Wang, T. de Cola, and J. Wang, “Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks with Non-Orthogonal Multiple Access,” IEEE Journal on Selected Topics in Signal Processing, vol. 13, no. 3, 2019, doi: 10.1109/JSTSP.2019.2899731. DOI: https://doi.org/10.1109/JSTSP.2019.2899731
M. Jia, Q. Gao, Q. Guo, X. Gu, and X. Shen, “Power Multiplexing NOMA and Bandwidth Compression for Satellite-Terrestrial Networks,” IEEE Trans Veh Technol, vol. 68, no. 11, 2019, doi: 10.1109/TVT.2019.2944077. DOI: https://doi.org/10.1109/TVT.2019.2944077
X. Yan et al., “The application of power-domain non-orthogonal multiple access in satellite communication networks,” IEEE access, vol. 7, pp. 63531–63539, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2917060
X. Yan, H. Xiao, C. X. Wang, and K. An, “On the ergodic capacity of NOMA-based cognitive hybrid satellite terrestrial networks,” in 2017 IEEE/CIC International Conference on Communications in China, ICCC 2017, 2018. doi: 10.1109/ICCChina.2017.8330454. DOI: https://doi.org/10.1109/ICCChina.2017.8330454
X. Zhang et al., “Outage Performance of NOMA-Based Cognitive Hybrid Satellite-Terrestrial Overlay Networks by Amplify-and-Forward Protocols,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2925314. DOI: https://doi.org/10.1109/ACCESS.2019.2925314
M. Monemi, H. Tabassum, and R. Zahedi, “On the Performance of Non-Orthogonal Multiple Access (NOMA): Terrestrial vs. Aerial Networks,” in 2020 8th International Conference on Communications and Networking, ComNet2020 - Proceedings, 2020. doi: 10.1109/ComNet47917.2020.9306102. DOI: https://doi.org/10.1109/ComNet47917.2020.9306102
J. Choi, “Power allocation for max-sum rate and max-min rate proportional fairness in NOMA,” IEEE Communications Letters, vol. 20, no. 10, 2016, doi: 10.1109/LCOMM.2016.2596760. DOI: https://doi.org/10.1109/LCOMM.2016.2596760
L. Yin and B. Clerckx, “Rate-splitting multiple access for satellite-terrestrial integrated networks: Benefits of coordination and cooperation,” IEEE Trans Wirel Commun, 2022. DOI: https://doi.org/10.1109/TWC.2022.3192980
Q. Ye, F. Zhao, and W. Xu, “NOMA-Based Integrated Satellite-Terrestrial Networks with Wireless Caching,” Wirel Commun Mob Comput, vol. 2022, 2022, doi: 10.1155/2022/6788449. DOI: https://doi.org/10.1155/2022/6788449
X. Yan, H. Xiao, C. X. Wang, and K. An, “Outage Performance of NOMA-Based Hybrid Satellite-Terrestrial Relay Networks,” IEEE Wireless Communications Letters, vol. 7, no. 4, 2018, doi: 10.1109/LWC.2018.2793916. DOI: https://doi.org/10.1109/LWC.2018.2793916
S. Xie, B. Zhang, D. Guo, and W. Ma, “Outage performance of NOMA-based integrated satellite-terrestrial networks with imperfect CSI,” Electron Lett, vol. 55, no. 14, 2019, doi: 10.1049/el.2018.7839. DOI: https://doi.org/10.1049/el.2018.7839
J. Chen, H. Zhang, and Z. Xie, “Space-Air-Ground Integrated Network (SAGIN): A Survey,” arXiv preprint arXiv:2307.14697, 2023.
Z. Gao, A. Liu, and X. Liang, “The Performance Analysis of Downlink NOMA in LEO Satellite Communication System,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2995261. DOI: https://doi.org/10.1109/ACCESS.2020.2995261
G. Araniti, A. Iera, S. Pizzi, and F. Rinaldi, “Toward 6G non-terrestrial networks,” IEEE Netw, vol. 36, no. 1, pp. 113–120, 2021. DOI: https://doi.org/10.1109/MNET.011.2100191
Gyeongrae Im, Dong Hyun Jung, Jung-Bin Kim, and Joon Gyu Ryu, “Empowering User Capabilities via Non-Orthogonal Multiple Access in 3GPP Non-Terrestrial Networks,” in International Conference on Information and Communication Technology Convergence (ICTC) 2023, Jeju-si Jeju-do South Korea, Oct. 2023, pp. 1–3.
C. Qi, J. Wang, L. Lyu, L. Tan, J. Zhang, and G. Y. Li, “Key Issues in Wireless Transmission for NTN-Assisted Internet of Things,” arXiv preprint arXiv:2311.15060, 2023. DOI: https://doi.org/10.1109/IOTM.001.2300206
A. F. M. S. Shah, M. A. Karabulut, and K. Rabie, “Multiple Access Schemes for 6G enabled NTN-assisted IoT Technologies: Recent Developments, Prospects and Challenges,” Authorea Preprints, 2023.
W. Liu, X. Hou, L. Chen, and T. Asai, “Unified Multi-User Multiplexing Scheme With Enhanced NOMA (eNOMA) for HAPS,” in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), IEEE, 2023, pp. 1–7. DOI: https://doi.org/10.1109/VTC2023-Fall60731.2023.10333511
W. Lu, K. An, and T. Liang, “Robust Beamforming Design for Sum Secrecy Rate Maximization in Multibeam Satellite Systems,” IEEE Trans Aerosp Electron Syst, vol. 55, no. 3, 2019, doi: 10.1109/TAES.2019.2905306. DOI: https://doi.org/10.1109/TAES.2019.2905306
R. A. Hussein and S. A. Ayoob, “Performance analysis of NOMA using different types Receivers,” 2021 4th International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 2021, pp. 131-136, doi: 10.1109/ICOIACT53268.2021.9563918. DOI: https://doi.org/10.1109/ICOIACT53268.2021.9563918
Ayad Q. Abdulkareem, Z. Q. Al-Abbasi, Mustafa Nadhim Ghazal, and Khalid Awaad Humood, “The Impact of User-Pairing on the Performance of Non-Orthogonal Multiple Access (NOMA) System”, DJES, vol. 15, no. 1, pp. 81–88, Mar. 2022. DOI: https://doi.org/10.24237/djes.2022.15108
Published
How to Cite
Issue
Section
Copyright (c) 2024 Abdulsattar M. Ahmed, Sayf A. Majeed, Salim Abdullah Hasan
This work is licensed under a Creative Commons Attribution 4.0 International License.