Design and Performance Optimization of a 3D-Printed SIW Antenna for Free-Space Applications

Authors

  • Md Mahabub Alam Faculty of Electronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
  • Nurhafizah Abu Talip Yusof Faculty of Electronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
  • Nurazyyati Inas Brownfield Engineering Sdn. Bhd., No.21, Jalan Teknologi 3/3A Taman Sains Selangor 1, Pju 5 Kota Damansara, 47810 Petaling Jaya, Selangor
  • Muhammad Naim Aminuddin Faculty of Electronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
  • Bifta Sama Bari Faculty of Electronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
  • Yasmin Abdul Wahab Faculty of Electronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
  • Mohamad Shaiful Abdul Karim Faculty of Electronic Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia

DOI:

https://doi.org/10.24237/djes.2025.18110

Keywords:

SIW, Material Characterization, Antenna, Waveguide, Environment

Abstract

This paper presents the design and performance evaluation of a Substrate-Integrated Waveguide (SIW) antenna fabricated using 3D printing technology, with a focus on optimizing its performance for future free-space applications. The proposed antenna integrates an SIW structure with a horn antenna concept, effectively combining the transmitter and receiver functions into a compact, monolithic substrate. This approach provides a miniaturized alternative to conventional free-space material characterization setups, leveraging SIW technology to replace bulky horn antennas with integrated structures. The study demonstrates the feasibility of compact free-space techniques for non-destructive testing, sensing, and electromagnetic material characterization applications. The study involves modeling and simulation using Computer Simulation Technology (CST) software, focusing on antenna performance in the G-band range (4–6 GHz). The fabricated prototype demonstrates resonant frequencies at 5.02 GHz and 6.0 GHz, with a scattering parameter below -10 dB and a well-defined radiation pattern, exhibiting sidelobes at -2.7 dB. The antenna is fabricated using biodegradable Polylactic Acid (PLA) material, reinforcing the potential for sustainable electronics while maintaining structural integrity and electromagnetic compatibility. While this study does not yet validate the antenna for material characterization, the results confirm its feasibility as a compact, cost-effective alternative to conventional free-space setups. This work lays the foundation for further optimization and experimental validation, advancing the role of 3D-printed SIW antennas in free-space applications.

Downloads

Download data is not yet available.

References

[1] G. M. Rocco, M. Bozzi, S. Marconi, G. Alaimo, F. Auricchio and D. Schreurs, "3D-printed microfluidic sensor in substrate integrated waveguide technology," In 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), pp. 1-3. IEEE, 2018. DOI: 10.1109/IMWS-AMP.2018.8457168.

[2] N. Hasan, N. S. M. Hussain, A.A.M. Faudzi, S. M. Shaharum, N.A.T. Yusof, N. H. Noordin, N.A.A. Mohtadzar and M. S. A. Karim, "Cured epoxy resin dielectric characterization based on accurate waveguide technique," In AIP Conference Proceedings, vol. 2129, no. 1. AIP Publishing, 2019. DOI: 10.1063/1.5118088.

[3] N. S. Khair, N. A. T. Yusof, Yasmin A. Wahab, B. S. Bari, N. I. Ayob and M. Zolkapli, "Substrate-integrated waveguide (SIW) microwave sensor theory and model in characterising dielectric material: A review," Sensors International (2023): 100244. DOI: 10.1016/j.sintl.2023.100244.

[4] A. H. Allah, G. A. Eyebe, and F. Domingue, "Fully 3D-printed microfluidic sensor using substrate integrated waveguide technology for liquid permittivity characterization," IEEE Sensors Journal 22, no. 11, 2022, 10541-10550. DOI: 10.1109/JSEN.2022.3170507.

[5] N. A. T. Yusof, N. Zainol, N. H. Aziz, and M. S. A. Karim, "Effect of fiber morphology and elemental composition of Ananas comosus leaf on cellulose content and permittivity," Current Applied Science and Technology, 2023,10-55003. DOI: 10.55003/cast.2023.06.23.002.

[6] S. Huang, K. Y. Chan, and Rodica Ramer, "Dielectric-loaded SIW H-plane horn antenna with gradient air slots." IEEE Antennas and Wireless Propagation Letters 20, no. 1, 2020, 43-47. DOI: 10.1109/LAWP.2020.3039265.

[7] S.M Shaharum., N.H. Hashim, N.A.T@ Yusof, A. Karim, and A.A. M Faudzi, “Automatic detection of diabetic retinopathy retinal images using artificial neural network”. In Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018, NUSYS'18, pp. 495-503, Springer Singapore. DOI:10.1007/978-981-13-3708-6_43

[8] Y. Cai, Z. Qian, W. Cao, Y. Zhang, J. Jin, L. Yang, and N. Jing, "Compact wideband SIW horn antenna fed by elevated-CPW structure." IEEE Transactions on Antennas and Propagation 63, no. 10, 2015, 4551-4557. DOI: 10.1109/TAP.2015.2456936

[9] D. Sun, J. Xu, and S. Jiang, "SIW horn antenna built on thin substrate with improved impedance matching." Electronics Letters 51, no. 16, 2015, 1233-1235. DOI: 10.1049/el.2015.1396.

[10] N.S. Khair, N. A. T. Yusof, M. H. M. Ariff, Y. A. Wahab, and B. S. Bari. "Recent advances and open challenges in RFID antenna applications." Enabling Industry 4.0 through Advances in Mechatronics: Selected Articles from iM3F 2021, Malaysia (2022): 507-517. DOI: 10.1007/978-981-19-2095-0_43.

[11] K. R. Brinker, and R. Zoughi, "A review of chipless RFID measurement methods, response detection approaches, and decoding techniques," IEEE Open Journal of Instrumentation and Measurement 1, 2022, 1-31. DOI: 10.1109/OJIM.2022.3196746.

[12] R. Colella, F. P. Chietera, F. Montagna, A. Greco and L. Catarinucci, "Customizing 3D-Printing for Electromagnetics to Design Enhanced RFID Antennas," in IEEE Journal of Radio Frequency Identification, vol. 4, no. 4, pp. 452-460, Dec. 2020. DOI: 10.1109/JRFID.2020.3001043.

[13] M. Z. E. Syefrizal, N. A. T. Yusof, M. S. A. Karim, N. Hasan and N. F. Zakaria, "Design of Vivaldi antenna for non-destructive measurement applications.", Engineering Technology International Conference (ETIC 2022), Online Conference, Kuantan, Malaysia, 2022, pp. 356-363. DOI: 10.1049/icp.2022.2644.

[14] N.A.T@ Yusof, S. M. Shaharum, A. A. M. Faudzi, S. Khatun, M. S. A. Karim, and S. F. Hazali. "Design of Ultra-Wideband (UWB) Horn Antenna for Non-destructive Fruit Quality Monitoring." In Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018: NUSYS'18, pp. 515-521. Springer Singapore, 2019. DOI: 10.1007/978-981-13-3708-6_45.

[15] S. S. Carvalho, J. R. V. Reis, A. Mateus and R. F. S. Caldeirinha, "Exploring Design Approaches for 3D Printed Antennas," in IEEE Access, vol. 12, pp. 10718-10735, 2024. DOI: 10.1109/ACCESS.2024.3354372.

[16] S.Huang, K. Y. Chan, Y. Wang, and R. Ramer. "High gain SIW H-plane horn antenna with 3D printed parasitic E-plane horn." Electronics 10, no. 19, 2021, 2391. DOI: 10.3390/electronics10192391.

[17] B. S. Bari, S. Khatun, K. H. Ghazali, M. Islam, M. Rashid, M, Rahman, and N. A. Talip, "Performance comparison of early breast cancer detection precision using AI and Ultra-Wideband (UWB) bio-antennas." In Cyber Security and Computer Science: Second EAI International Conference, ICONCS 2020, Dhaka, Bangladesh, February 15-16, 2020, Proceedings 2, pp. 354-365. Springer International Publishing, 2020. DOI: 10.1007/978-3-030-52856-0_28.

[18] M. M. Alam, A. A. F. Faudzi, S. M. Shaharum, Y. A. Wahab, M. H. A. A. Malek, M. S. A. Karim and N. A. T. Yusof., “Design and analysis of triple-band SIW antenna for K-Band and Ka-Band applications”, International Exchange and Innovation Conference on Engineering & Sciences, Japan, 2024. DOI: 10.5109/7323346.

[19] J. Olivová., M. Popela., M. Richterová and E. Štefl., 2022. “Use of 3D printing for horn antenna manufacturing”, Electronics, 11(10), p.1539. DOI: 10.3390/electronics11101539.

[20] H. Amer and M. A. K. Abdulsattar, "Design of substrate integrated waveguide (SIW) antenna," Communications on Applied Electronics 7, no. 17, 2018, 14-20. DOI: 10.5120/cae2018652774.

[21] Y. Alnaiemy and L. Nagy, "Improved antenna gain and efficiency using novel EBG layer," In 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), pp. 271-276. IEEE, 2020. DOI: 10.1109/SoSE50414.2020.9130494.

[22] K. Anusha, K. Karthika, D. Mohanageetha, A. Monika, S. V. N S. Kumar, and B. Lavanya. "Gain enhancement of circular patch antenna using SRR array," In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), pp. 1-5. IEEE, 2021. DOI: 10.1109/ICAECA52838.2021.9675499.

[23] H. Jin and X. Jing, "A Novel Humidity Sensor Based on Slow-Wave Substrate Integrated Waveguide," In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), pp. 27-28. IEEE, 2024. DOI: 10.1109/AP-S/INC-USNC-URSI52054.2024.10686746

[24] C. M. Chen, L. Chen, Y. Yao, and Y. Peng. "Flexible SIW humidity sensors based on nanodiamond sensing films," International Journal of Microwave and Wireless Technologies 15, no. 9, 2023, 1475-1482.DOI: 10.1017/S1759078723000363

[25] M. Amiri, M. Abolhasan, N. Shariati, and J. Lipman, "Soil moisture remote sensing using SIW cavity based metamaterial perfect absorber," Scientific Reports, 11, no. 1 (2021): 7153.DOI: 10.1038/s41598-021-86194-2.

[26] M.S.A.Karim, N. Zainol, N.I.A.A.H. As’ari, N.A.T. Yusof and N.H. Aziz, 2022, “Effect of processing parameters on cellulose content extracted from pineapple leaf.” Biocatalysis and Agricultural Biotechnology, 42, p.102339. DOI: 10.1016/j.bcab.2022.102339.

[27] L. Kumar, V. Nath and B.V.R. Reddy, 2023, “A wideband substrate integrated waveguide (SIW) antenna using shorted vias for 5G communications” AEU-International Journal of Electronics and Communications, 171, p.154879.DOI: 10.1016/j.aeue.2023.154879.

[28] Galka, A. Georgievich, A. V. Kostrov, S. E. Priver, A. V. Strikovskiy, V. V. Parshin, E. A. Serov, A. S. Nikolenko, S. V. Korobkov, and M. E. Gushchin, "Microwave Cavity Sensor for Measurements of Air Humidity under Reduced Pressure", Sensors 23, no. 3, 2023, 1498. DOI: 10.3390/s23031498.

[29] J. Chocarro, J. M. P. Escudero, J. Teniente, J. C. I. Galarregui and I. Ederra, "A metasurface-enhanced substrate-integrated waveguide Antenna," IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3394698.

[30] V.Kumari, W. Bhowmik, and S. Srivastava. "Design of high-gain SIW and HMSIW H-plane horn antenna using metamaterial." International Journal of Microwave and Wireless Technologies 7, no. 6 (2015): 713-720. DOI: 10.1017/S1759078714000920.

[31] M. Farashahi, E. Z. Jahromi, and R. Basiri. "A compact semi-open wideband SIW horn antenna for K/Ku band applications." AEU-International Journal of Electronics and Communications 92 (2018): 15-20. DOI: 10.1016/j.aeue.2018.05.012.

[32] Z. Gholipour, and J. A. Shokouh. "Substrate integrated waveguide corrugated horn antenna." Wireless Personal Communications 109, 2019,1605-1614. DOI: 10.1007/s11277-019-06640-3.

[33] R. Colella, F. P. Chietera, and L. Catarinucci. "Analysis of FDM and DLP 3D-printing technologies to prototype electromagnetic devices for RFID applications." Sensors 21, no. 3 (2021): 897. DOI: 10.3390/s21030897.

[34] E. Huber, M. Mirzaee, J. Bjorgaard, M. Hoyack, S. Noghanian, and I. Chang. "Dielectric property measurement of PLA." In 2016 IEEE International Conference on Electro Information Technology (EIT), pp. 0788-0792. IEEE, 2016. DOI: 10.1109/EIT.2016.7535340.

[35] T.M. Joseph, A. Kallingal, A. M. Suresh, D. K. Mahapatra, M. S. Hasanin, J. Haponiuk, and S. Thomas. "3D printing of polylactic acid: recent advances and opportunities." The International Journal of Advanced Manufacturing Technology 125, no. 3 (2023): 1015-1035. DOI: 10.1007/s00170-022-10795-y.

[36] X. Wang, L. Huang., Y. Li., Y. Wang, Lu, X., Wei, Z., Mo, Q., Zhang, S., Sheng, Y., Huang, C. and Zhao, H., 2024, “Research progress in polylactic acid processing for 3D printing”, Journal of Manufacturing Processes, 112, pp.161-178. DOI: 10.1016/j.jmapro.2024.01.03.

[37] G. Liu, C. Wang, Z. Jia, K. Wang, W. Ma and Z. Li, "A Rapid Design and Fabrication Method for a Capacitive Accelerometer Based on Machine Learning and 3D Printing Techniques", in IEEE Sensors Journal, vol. 21, no. 16, pp. 17695-17702, 15 Aug.15, 2021. DOI: 10.1109/JSEN.2021.3085743.

[38] A.K.Kesarwani, M. Yadav, D. Singh, and G. D. Gautam. "A review on the recent applications of particle swarm optimization & genetic algorithm during antenna design." Materials Today: Proceedings 56 (2022): 3823-3825. DOI: 10.1016/j.matpr.2022.02.200

[39] R.R. Holkar., G. G. Umarji, M. D. Shinde, and S. B. Rane. "3D printing of microwave materials, components and their applications–A review." Journal of Manufacturing Processes 137 (2025): 280-305. DOI: 10.1016/j.jmapro.2025.02.006.

[40] D. Srinivasan, M. Meignanamoorthy, M. Ravichandran, V. Mohanavel, S. V. Alagarsamy, C. Chanakyan, S. Sakthivelu, Alagar Karthick, T. Ram Prabhu, and S. Rajkumar, "3D printing manufacturing techniques, materials, and applications: an overview." Advances in materials science and engineering 2021, no. 1 (2021): 5756563. DOI: 10.1155/2021/5756563.

[41] T. Agrawal and S. Srivastava, "Two element MIMO antenna using Substrate Integrated Waveguide (SIW) horn," In 2016 International Conference on Signal Processing and Communication (ICSC), pp. 508-511. IEEE, 2016. DOI: 10.1109/ICSPCom.2016.7980633.

[42] I. Nachev and I. Iliev. "A simplified methodology for h-plane siw horn antenna design," In 2023 58th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), pp. 245-248. IEEE, 2023. DOI: 10.1109/ICEST58410.2023.10187258.

[43] A. K. Nayak, V. S. Yadav and A. Patnaik, "An H-plane multi-horn antenna using substrate integrated waveguide technique," In 2021 National Conference on Communications (NCC), pp. 1-4. IEEE, 2021. DOI: 10.1109/NCC52529.2021.9530167.

[44] A. Munir, B. Syihabuddin, M. F. Maulana and R. Aulia, "Characterization of a 3D-printed PLA-based slotted SIW antenna," In 2023 Workshop on Microwave Theory and Technology in Wireless Communications (MTTW), pp. 128-131. IEEE, 2023. DOI: 10.1109/MTTW59774.2023.10320082.

[45] Y. Kim and S. Lim, "Low loss substrate-integrated waveguide using 3D-printed non-uniform honeycomb-shaped material." IEEE Access 8, 2020, 191090-191099. DOI: 10.1109/ACCESS.2020.3032132.

Downloads

Published

2025-03-06

How to Cite

[1]
“Design and Performance Optimization of a 3D-Printed SIW Antenna for Free-Space Applications”, DJES, vol. 18, no. 1, pp. 170–191, Mar. 2025, doi: 10.24237/djes.2025.18110.

Similar Articles

1-10 of 176

You may also start an advanced similarity search for this article.