Balancing Privacy and Performance: Federated Learning with Differential Privacy for Real-Time, Resilient Healthcare AI
DOI:
https://doi.org/10.24237/djes.2025.18301Keywords:
Federated Learning, Machine Learning, Decentralized Systems, Health care, Differential Privacy, Privacy-PreservingAbstract
The escalating dependence on artificial intelligence (AI) within the healthcare sector presents significant challenges pertaining to data privacy, regulatory adherence, and the pragmatic implementation of predictive models. This review meticulously examines the amalgamation of Federated Learning (FL) and Differential Privacy (DP) as a prospective framework to mitigate these issues within decentralized healthcare infrastructures. We conduct a comprehensive analysis of extant FL-DP frameworks, concentrating on their capacity to safeguard privacy, uphold performance standards, and function efficiently in real-time clinical settings. The review encompasses architectural advancements, edge computing methodologies, adaptive privacy budgets, and the contributions of blockchain and the Internet of Medical Things (IoMT) in facilitating secure data interchange. Comparative assessments and case studies are synthesized to evaluate model precision, scalability, and conformity with regulatory mandates. Notwithstanding significant advancements, we delineate critical deficiencies, including ethical dilemmas, algorithmic equity, data disparity, and obstacles to deployment. Our contributions consist of a benchmarking framework, the delineation of unresolved research inquiries, and actionable insights for the formulation of secure, just, and scalable FL-DP systems within the healthcare domain. This paper delineates a strategic framework for prospective research and the execution of privacy-preserving AI within clinical practice. The outcomes highlight significant potential for real-world clinical implementation, fostering enhanced patient care, supporting regulatory compliance, and enabling scalable, privacy-preserving AI adoption across diverse healthcare environments.
Downloads
References
[1] E. A. Abed and T. Aguili, “Automated Medical Image Captioning Using the BLIP Model: Enhancing Diagnostic Support with AI-Driven Language Generation,” Diyala J. Eng. Sci. , vol. 18, no. 2, pp. 228–248, Jun. 2025, doi: 10.24237/DJES.2025.18215.
[2] S. D. A. Ahmed, T. Abbas, and A. R. Abbas, “Review of Detecting Text generated by ChatGPT Using Machine and Deep-Learning Models: A Tools and Methods Analysis,” Diyala J. Eng. Sci. , vol. 18, no. 1, pp. 34–54, Mar. 2025, doi: 10.24237/DJES.2025.18102.
[3] P. Rajpurkar et al., “CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning,” Int. J. Sci. Res. Sci. Technol., vol. 12, no. 1, pp. 34–36, Nov. 2017, Accessed: Jun. 01, 2025. [Online]. Available: http://arxiv.org/abs/1711.05225
[4] B. Singh, A. Chandra, D. Joshi, N. Semwal, G. Kukreti, and U. Saxena, “Application of Artificial Intelligence Techniques in Healthcare,” AI Soc. Bus. World A Compr. Approach, pp. 67–101, Oct. 2024, doi: 10.2174/9789815256864124010005.
[5] A. K. Momani, “Implications of Artificial Intelligence on Health Data Privacy and Confidentiality,” Jan. 2025, Accessed: Jun. 01, 2025. [Online]. Available: https://arxiv.org/pdf/2501.01639
[6] Y. Madinabonu, “Challenges and Opportunities for AI in Healthcare,” Int. J. Law Policy, vol. 2, no. 7, pp. 11–15, Jul. 2024, doi: 10.59022/IJLP.203.
[7] A. E. Abdelkareem, “Performance Analysis of Deep Learning based Signal Constellation Identification Algorithms for Underwater Acoustic Communications,” Diyala J. Eng. Sci. , vol. 17, no. 3, pp. 1–14, Sep. 2024, doi: 10.24237/DJES.2024.17301.
[8] N. Abbasi and D. A. Smith, “CYBERSECURITY IN HEALTHCARE: SECURING PATIENT HEALTH INFORMATION (PHI), HIPPA COMPLIANCE FRAMEWORK AND THE RESPONSIBILITIES OF HEALTHCARE PROVIDERS,” J. Knowl. Learn. Sci. Technol. ISSN 2959-6386, vol. 3, no. 3, pp. 278–287, Sep. 2024, doi: 10.60087/JKLST.VOL3.N3.P.278-287.
[9] K. Switala, “Medical Data in the Digital Era - Legal Challenges Related to Providing Information Security, Applying GDPR and Respecting the Professional Secrecy,” 2023 46th ICT Electron. Conv. MIPRO 2023 - Proc., pp. 1457–1466, 2023, doi: 10.23919/MIPRO57284.2023.10159891.
[10] A. Aloqaily, E. E. Abdallah, R. Al-Zyoud, E. Abu Elsoud, M. Al-Hassan, and A. E. Abdallah, “Deep Learning Framework for Advanced De-Identification of Protected Health Information,” Futur. Internet 2025, Vol. 17, Page 47, vol. 17, no. 1, p. 47, Jan. 2025, doi: 10.3390/FI17010047.
[11] A. V. Pargaien, S. Pargaien, A. Nawaz, and T. Kumar, “A Review on the Integration of Artificial Intelligence in Healthcare,” 5th Int. Conf. Electron. Sustain. Commun. Syst. ICESC 2024 - Proc., pp. 880–884, 2024, doi: 10.1109/ICESC60852.2024.10689737.
[12] D. Srikannan, “Integrated Diagnosis, Treatment and Prognosis in Healthcare using Artificial Intelligence,” Indian J. Artif. Intell. Neural Netw., vol. 4, no. 3, pp. 1–5, May 2024, doi: 10.54105/IJAINN.C1086.04030424.
[13] T. Siradanai, C. L. Kok, C. K. Ho, Y. Y. Koh, and T. H. Teo, “Artificial Intelligence in Healthcare Systems,” Proc. - 2024 IEEE 17th Int. Symp. Embed. Multicore/Many-core Syst. MCSoC 2024, pp. 54–57, 2024, doi: 10.1109/MCSOC64144.2024.00019.
[14] M. Aggarwal, V. Khullar, and N. Goyal, “A comprehensive review of federated learning: Methods, applications, and challenges in privacy-preserving collaborative model training,” Appl. Data Sci. Smart Syst., pp. 570–575, Jan. 2024, doi: 10.1201/9781003471059-73.
[15] S. H. Moon and W. Hee Lee, “Privacy-Preserving Federated Learning in Healthcare,” 2023 Int. Conf. Electron. Information, Commun. ICEIC 2023, 2023, doi: 10.1109/ICEIC57457.2023.10049966.
[16] M. Butt et al., “A Fog-Based Privacy-Preserving Federated Learning System for Smart Healthcare Applications,” Electron. 2023, Vol. 12, Page 4074, vol. 12, no. 19, p. 4074, Sep. 2023, doi: 10.3390/ELECTRONICS12194074.
[17] J. Sen, H. Waghela, S. Rakshit, J. Sen, H. Waghela, and S. Rakshit, “Privacy in Federated Learning,” Data Priv. - Tech. Appl. Stand., Jan. 2025, doi: 10.5772/INTECHOPEN.1006677.
[18] “Federated Learning in Healthcare: A Path Towards Decentralized and Secure Medical Insights–IJSREM.” https://ijsrem.com/download/federated-learning-in-healthcare-a-path-towards-decentralized-and-secure-medical-insights/ (accessed Jun. 01, 2025).
[19] X. Xu, Q. Wu, and J. Wen, “Real-World Application of Federated Learning for Collaborative Medical Image Classification: A Case Study in Shenzhen’s Hospitals and Research Institutions,” Dec. 2024, doi: 10.31219/OSF.IO/S2RN9.
[20] C. Bandla, “Distributed Database Architectures for Federated Medical Training”, doi: 10.48175/IJARSCT-22774.
[21] A. Soliman, A. Mohamed, E. Yaacoub, N. V. Navkar, and A. Erbad, “Intelligent DRL-Based Adaptive Region of Interest for Delay-sensitive Telemedicine Applications,” Oct. 2023, Accessed: Aug. 01, 2025. [Online]. Available: https://arxiv.org/pdf/2310.05099
[22] S. R. Abbas, Z. Abbas, A. Zahir, and S. W. Lee, “Federated Learning in Smart Healthcare: A Comprehensive Review on Privacy, Security, and Predictive Analytics with IoT Integration,” Healthc. 2024, Vol. 12, Page 2587, vol. 12, no. 24, p. 2587, Dec. 2024, doi: 10.3390/HEALTHCARE12242587.
[23] D. Ganesh and O. B. V. Ramanaiah, “Edge Federated Learning for Smart HealthCare Systems: Applications and Challenges,” 4th Int. Conf. Sustain. Expert Syst. ICSES 2024 - Proc., pp. 1727–1735, 2024, doi: 10.1109/ICSES63445.2024.10763213.
[24] D. C. Nguyen et al., “Federated Learning for Smart Healthcare: A Survey,” ACM Comput. Surv., vol. 55, no. 3, Jan. 2022, doi: 10.1145/3501296;WGROUP:STRING:ACM.
[25] F. Li et al., “Harnessing artificial intelligence in sepsis care: advances in early detection, personalized treatment, and real-time monitoring,” Front. Med., vol. 11, p. 1510792, Jan. 2024, doi: 10.3389/FMED.2024.1510792/XML/NLM.
[26] A. Boussina, S. Shashikumar, F. Amrollahi, H. Pour, M. Hogarth, and S. Nemati, “Development & Deployment of a Real-time Healthcare Predictive Analytics Platform,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2023, doi: 10.1109/EMBC40787.2023.10340351.
[27] B. Charan, D. Jaswanth, E. Hemanth, and M. S. Naidu, “Machine Learning and Deep Learning Approaches for Healthcare Predictive Analytics,” 5th Int. Conf. Electron. Sustain. Commun. Syst. ICESC 2024 - Proc., pp. 1698–1707, 2024, doi: 10.1109/ICESC60852.2024.10689833.
[28] G. A. Tsihrintzis et al., “Federated Learning: Navigating the Landscape of Collaborative Intelligence,” Electron. 2024, Vol. 13, Page 4744, vol. 13, no. 23, p. 4744, Nov. 2024, doi: 10.3390/ELECTRONICS13234744.
[29] B. Yurdem, M. Kuzlu, M. K. Gullu, F. O. Catak, and M. Tabassum, “Federated learning: Overview, strategies, applications, tools and future directions,” Heliyon, vol. 10, no. 19, p. e38137, Oct. 2024, doi: 10.1016/J.HELIYON.2024.E38137.
[30] S. Annamalai, N. Sangeetha, M. Kumaresan, D. Tejavarma, G. H. Vardhan, and A. S. Kumar, “Application Domains of Federated Learning,” Model Optim. Methods Effic. Edge AI Fed. Learn. Archit. Fram. Appl., pp. 127–144, Jan. 2024,doi: 10.1002/9781394219230.CH7;SUBPAGE:STRING:ABSTRACT;WEBSITE:WEBSITE:PERICLES;CTYPE:STRING:BOOK.
[31] K. Daly, H. Eichner, P. Kairouz, H. B. McMahan, D. Ramage, and Z. Xu, “Federated Learning in Practice: Reflections and Projections,” Oct. 2024, doi: 10.1109/TPS-ISA62245.2024.00026.
[32] R. Danger, “Differential Privacy : What is all the noise about ?,” pp. 1–27.
[33] H. K. Gedawy, C. Mellon, U. Khaled, A. Harras, T. Bui, and T. Tanveer, “RealFL: A Realistic Platform for Federated Learning,” pp. 313–317, Oct. 2023, doi: 10.1145/3616388.3623799.
[34] S. Ben Othman and M. Getahun, “Leveraging blockchain and IoMT for secure and interoperable electronic health records,” Sci. Rep., vol. 15, no. 1, pp. 1–25, Dec. 2025, doi: 10.1038/S41598-025-95531-8;SUBJMETA=166,4077,639;KWRD=ENERGY+SCIENCE+AND+TECHNOLOGY,ENGINEERING.
[35] C. Li, N. Kumar, Z. Song, Z. Liang, and Y. Chen, “Optimizing differential privacy in a federated learning framework: strategies for dynamic clipping and privacy allocation,” Eng. Res. Express, vol. 7, no. 1, p. 015231, Jan. 2025, doi: 10.1088/2631-8695/ADA2DB.
[36] M. A. Mohammed et al., “Federated-Reinforcement Learning-Assisted IoT Consumers System for Kidney Disease Images,” IEEE Trans. Consum. Electron., vol. 70, no. 4, pp. 7163–7173, 2024, doi: 10.1109/TCE.2024.3384455.
[37] M. A. Mohammed, M. K. A. Ghani, A. Lakhan, B. AL-Attar, and W. Khaled, “Federated Learning-Driven IoT and Edge Cloud Networks for Smart Wheelchair Systems in Assistive Robotics,” Iraqi J. Comput. Sci. Math., vol. 6, no. 1, p. 9, Mar. 2025, doi: 10.52866/2788-7421.1241.
[38] M. A. Mohammed et al., “Energy-efficient distributed federated learning offloading and scheduling healthcare system in blockchain based networks,” Internet of Things, vol. 22, p. 100815, Jul. 2023, doi: 10.1016/J.IOT.2023.100815.
[39] “International Research Journal on Advanced Science Hub.” https://rspsciencehub.com/index.php/journal (accessed Jun. 05, 2025).
[40] Y. Li, C. Wang, and L. Xu, “Enhancing Collaborative Medical Image Diagnosis Using Federated Learning: A Case Study from Shenzhen’s Top Hospitals,” Dec. 2024, doi: 10.31219/OSF.IO/BCEPF.
[41] G. M. Raj, M. G. Morley, and M. Eslami, “Federated Learning for Diabetic Retinopathy Diagnosis: Enhancing Accuracy and Generalizability in Under-Resourced Regions,” Oct. 2024, doi: 10.1109/URTC65039.2024.10937616.
[42] N. Jagan Mohan, R. Murugan, and T. Goel, “DR-FL: A Novel Diabetic Retinopathy Grading with Federated Learning Using Fundus Images,” Healthc. Res. Relat. Technol., pp. 355–366, 2023, doi: 10.1007/978-981-99-4056-1_24.
[43] K. B. Nampalle, P. Singh, U. V. Narayan, and B. Raman, “Vision Through the Veil: Differential Privacy in Federated Learning for Medical Image Classification,” Jun. 2023, Accessed: Jun. 05, 2025. [Online]. Available: https://arxiv.org/pdf/2306.17794
[44] A. Sharma, T. Tripathi, and A. Majumdar, “Enhancing Edge-based Cardiovascular Diagnosis through Federated Learning and IoT,” 2024 15th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2024, 2024, doi: 10.1109/ICCCNT61001.2024.10724661.
[45] F. S. Shahazad Niwazi Qurashi, “Federated Machine Learning Using The Internet Of Medical Things For Cardiac Disease Detection,” Tuijin Jishu/Journal Propuls. Technol., vol. 44, no. 4, pp. 2719–2733, Oct. 2023, doi: 10.52783/TJJPT.V44.I4.1338.
[46] J. Jonnagaddala and Z. S. Y. Wong, “Privacy preserving strategies for electronic health records in the era of large language models,” npj Digit. Med., vol. 8, no. 1, pp. 1–3, Dec. 2025, doi: 10.1038/S41746-025-01429-0;SUBJMETA=228,692,700;KWRD=HEALTH+CARE,HEALTH+SERVICES.
[47] A. Ganji, D. Usha, and P. S. Rajakumar, “Hybrid Machine Learning Framework with Data Analytics Model for Privacy-Preserved Intelligent Predictive Maintenance in Healthcare IoT,” J. Comput. Sci., vol. 21, no. 1, pp. 1–12, Nov. 2024, doi: 10.3844/JCSSP.2025.1.12.
[48] S. M. Attya et al., “Harnessing Federated Learning for Secure Data Sharing in Healthcare Systems,” Conf. Open Innov. Assoc. Fruct, pp. 390–399, 2024, doi: 10.23919/FRUCT64283.2024.10749928.
[49] M. E. Yahiaoui et al., “Federated Learning with Privacy Preserving for Multi- Institutional Three-Dimensional Brain Tumor Segmentation,” Diagnostics, vol. 14, no. 24, p. 2891, Dec. 2024, doi: 10.3390/DIAGNOSTICS14242891.
[50] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, “Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10670 LNCS, pp. 287–297, 2018, doi: 10.1007/978-3-319-75238-9_25.
[51] C. Ji, C. Baoluo, G. Zhiyong, Q. Jing, and W. Zumin, “COVID-19 Classification Algorithm Based on Privacy Preserving Federated Learning,” Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 488 LNICST, pp. 161–173, 2023, doi: 10.1007/978-3-031-34586-9_13.
[52] S. S. Chowa et al., “An automated privacy-preserving self-supervised classification of COVID-19 from lung CT scan images minimizing the requirements of large data annotation,” Sci. Rep., vol. 15, no. 1, pp. 1–20, Dec. 2025, doi: 10.1038/S41598-024-83972-6;SUBJMETA=114,1305,1564,631;KWRD=IMAGE+PROCESSING,MACHINE+LEARNING.
[53] H. Mehta, W. Krichene, A. Thakurta, A. Kurakin, and A. Cutkosky, “Differentially Private Image Classification from Features,” Nov. 2022, Accessed: Jun. 05, 2025. [Online]. Available: https://arxiv.org/pdf/2211.13403
[54] B. Sazdov et al., “Prediction of Hospital Readmission using Federated Learning,” Int. Conf. Syst. Signals, Image Process., vol. 2023-June, 2023, doi: 10.1109/IWSSIP58668.2023.10180282.
[55] K. ; Al-Jumaili, H. Kadhim Tayyeh, A. Sabah, and A. Al-Jumaili, “Balancing Privacy and Performance: A Differential Privacy Approach in Federated Learning,” Comput. 2024, Vol. 13, Page 277, vol. 13, no. 11, p. 277, Oct. 2024, doi: 10.3390/COMPUTERS13110277.
[56] M. H. Fares, A. M. Saad, and E. Saad, “Towards Privacy-Preserving Medical Imaging: Federated Learning with Differential Privacy and Secure Aggregation Using a Modified ResNet Architecture,” Dec. 2024, Accessed: Aug. 01, 2025. [Online]. Available: https://arxiv.org/pdf/2412.00687
[57] Y. Cheng, W. Li, S. Qin, and T. Tu, “Differential Privacy Federated Learning Based on Adaptive Adjustment,” Comput. Mater. Contin., vol. 82, no. 3, pp. 4777–4795, Mar. 2025, doi: 10.32604/CMC.2025.060380.
[58] M. van Dijk and P. H. Nguyen, “Considerations on the theory of training models with differential privacy,” Fed. Learn. Theory Pract., pp. 29–55, Jan. 2024, doi: 10.1016/B978-0-44-319037-7.00009-0.
[59] A. Pustozerova, J. Baumbach, and R. Mayer, “Analysing Utility Loss in Federated Learning with Differential Privacy,” Proc. - 2023 IEEE 22nd Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2023, pp. 1230–1235, 2023, doi: 10.1109/TRUSTCOM60117.2023.00167.
[60] A. Elgabli and W. Mesbah, “A Novel Approach for Differential Privacy-Preserving Federated Learning,” IEEE Open J. Commun. Soc., 2024, doi: 10.1109/OJCOMS.2024.3521651.
[61] Z. Yu, Z. Lu, S. Lu, Y. Cui, X. Tang, and J. Wu, “Adaptive Differential Privacy via Gradient Components in Medical Federated Learning,” Proc. - 2024 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2024, pp. 3929–3934, 2024, doi: 10.1109/BIBM62325.2024.10822141.
[62] K. M. Babu, E. Bhavitha, M. Mythri, A. Anusha, B. S. Chandana, and C. Gazala Akhtar, “Privacy-Preserving Federated Learning for Healthcare: A Synergistic Approach using Differential Privacy and Homomorphic Encryption,” SSRN Electron. J., Nov. 2024, doi: 10.2139/SSRN.5088943.
[63] D. Bhulakshmi and D. S. Rajput, “FedDL: personalized federated deep learning for enhanced detection and classification of diabetic retinopathy,” PeerJ Comput. Sci., vol. 10, p. e2508, Dec. 2024, doi: 10.7717/PEERJ-CS.2508/FIG-10.
[64] R. Vavekanand, “Data Security and Privacy in Genomics Research: A Comparative Analysis to Protect Confidentiality,” Stud. Med. Heal. Sci., vol. 1, no. 1, pp. 23–31, May 2024, doi: 10.48185/SMHS.V1I1.1158.
[65] H. Li, R. Monger, E. Pishgar, and M. Pishgar, “ICU Readmission Prediction for Intracerebral Hemorrhage Patients using MIMIC III and MIMIC IV Databases,” medRxiv, p. 2025.01.01.25319859, Jan. 2025, doi: 10.1101/2025.01.01.25319859.
[66] D. Beals, L. Simon, F. Rogers, and S. Pogroszewski, “Revolutionizing Diabetic Retinopathy Screening: Integrating AI-Based Retinal Imaging in Primary Care,” J. C., vol. 14, no. 1, Dec. 2025, doi: 10.1080/28338073.2024.2437294.
[67] J. Chung and J. Teo, “Single classifier vs. ensemble machine learning approaches for mental health prediction,” Brain Informatics, vol. 10, no. 1, pp. 1–10, Dec. 2023, doi: 10.1186/S40708-022-00180-6/FIGURES/2.
[68] J. Hong, D. Lee, A. Hwang, T. Kim, H. Y. Ryu, and J. Choi, “Rare disease genomics and precision medicine,” Genomics Informatics 2024 221, vol. 22, no. 1, pp. 1–11, Dec. 2024, doi: 10.1186/S44342-024-00032-1.
[69] R. Ahmed, P. K. R. Maddikunta, T. R. Gadekallu, N. K. Alshammari, and F. A. Hendaoui, “Efficient differential privacy enabled federated learning model for detecting COVID-19 disease using chest X-ray images,” Front. Med., vol. 11, p. 1409314, Jun. 2024, doi: 10.3389/FMED.2024.1409314/BIBTEX.
[70] A. G. C. de Sá et al., “Explainable Machine Learning for ICU Readmission Prediction,” Sep. 2023, Accessed: Jun. 06, 2025. [Online]. Available: https://arxiv.org/pdf/2309.13781
[71] A. Laouamri, S. Cherbal, Y. Mosbah, C. Benrebbouh, and K. Kharoubi, “Blockchain Approach for Healthcare Using Fog Topology and Lightweight Consensus,” https://aip.vse.cz/doi/10.18267/j.aip.256.html, vol. 14, no. 1, pp. 128–154, 2025, doi: 10.18267/J.AIP.256.
[72] S. B. Prasad, A. R. Ashok Kumar, and R. V. Honnungar, “Blockchain-Based Scalability Solutions for IoT: A Decentralized Design to Enhance Performance and Security,” Proc. CONECCT 2024 - 10th IEEE Int. Conf. Electron. Comput. Commun. Technol., 2024, doi: 10.1109/CONECCT62155.2024.10677307.
[73] A. M. Al-Madni, X. Ying, M. Tawfik, and Z. A. T. Ahmed, “An Optimized Blockchain Model for Secure and Efficient Data Management in Internet of Things,” 2024 IEEE Int. Conf. Inf. Technol. Electron. Intell. Commun. Syst. ICITEICS 2024, 2024, doi: 10.1109/ICITEICS61368.2024.10624817.
[74] V. Puri, A. Kataria, and V. Sharma, “Artificial intelligence-powered decentralized framework for Internet of Things in Healthcare 4.0,” Trans. Emerg. Telecommun. Technol., vol. 35, no. 4, p. e4245, Apr. 2024, doi: 10.1002/ETT.4245;WGROUP:STRING:PUBLICATION.
[75] M. Sajjad et al., “Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities,” Futur. Gener. Comput. Syst., vol. 108, pp. 995–1007, Jul. 2020, doi: 10.1016/J.FUTURE.2017.11.013.
[76] “Body temperature norms: MedlinePlus Medical Encyclopedia.” https://medlineplus.gov/ency/article/001982.htm (accessed Jun. 11, 2025).
[77] Islam, M.A., Mostofa, K.Z., Mohafez, H., Hossen, M.J., Low, F.W., Vasiliev, M., Islam, S.M.S. and Nur-E-Alam, M., 2024. Combination of Sensors-Based Monitoring System and Internet of Things (IoT): A Survey and Framework for Remote and Intensive Care Unit Patients. In Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing (pp. 413-439). CRC Press.
[78] A. Shahnaz, U. Qamar, and A. Khalid, “Using Blockchain for Electronic Health Records,” IEEE Access, vol. 7, pp. 147782–147795, 2019, doi: 10.1109/ACCESS.2019.2946373.
[79] P. T. S. Liu, “Medical Record System Using Blockchain, Big Data and Tokenization,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9977 LNCS, pp. 254–261, 2016, doi: 10.1007/978-3-319-50011-9_20.
[80] M. Subramanian, V. Rajasekar, V. E. Sathishkumar, K. Shanmugavadivel, and P. S. Nandhini, “Effectiveness of Decentralized Federated Learning Algorithms in Healthcare: A Case Study on Cancer Classification,” Electron. 2022, Vol. 11, Page 4117, vol. 11, no. 24, p. 4117, Dec. 2022, doi: 10.3390/ELECTRONICS11244117.
[81] H. Pathipati, L. N. B. Ramisetti, D. N. Reddy, S. Pesaru, M. Balakrishna, and T. Anitha, “Optimizing Cancer Detection: Swarm Algorithms Combined with Deep Learning in Colon and Lung Cancer using Biomedical Images,” Diyala J. Eng. Sci. , vol. 18, no. 1, pp. 91–102, Mar. 2025, doi: 10.24237/DJES.2025.18105.
[82] K. Yin and J. Mao, “Personalized Federated Learning with Adaptive Feature Aggregation and Knowledge Transfer,” Oct. 2024, Accessed: Jul. 31, 2025. [Online]. Available: https://arxiv.org/pdf/2410.15073
[83] W. Xie et al., “JointSQ: Joint Sparsification-Quantization for Distributed Learning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 5778–5787, 2024, doi: 10.1109/CVPR52733.2024.00552.
[84] S. Song, S. Du, Y. Song, and Y. Zhu, “Communication-Efficient and Private Federated Learning with Adaptive Sparsity-Based Pruning on Edge Computing,” Electron. 2024, Vol. 13, Page 3435, vol. 13, no. 17, p. 3435, Aug. 2024, doi: 10.3390/ELECTRONICS13173435.
[85] M. A. Sufian, L. Alsadder, W. Hamzi, S. Zaman, A. S. M. S. Sagar, and B. Hamzi, “Mitigating Algorithmic Bias in AI-Driven Cardiovascular Imaging for Fairer Diagnostics,” Diagnostics 2024, Vol. 14, Page 2675, vol. 14, no. 23, p. 2675, Nov. 2024, doi: 10.3390/DIAGNOSTICS14232675.
[86] Y. Huang et al., “A scoping review of fair machine learning techniques when using real-world data,” J. Biomed. Inform., vol. 151, p. 104622, Mar. 2024, doi: 10.1016/J.JBI.2024.104622.
[87] S. Chen, W. Liu, X. Zhang, H. Xu, W. Lin, and X. Chen, “Adaptive Personalized Federated Learning for Non-IID Data with Continual Distribution Shift,” 2024 IEEE/ACM 32nd Int. Symp. Qual. Serv., pp. 1–6, Jun. 2024, doi: 10.1109/IWQOS61813.2024.10682851.
[88] A. K. Nair, J. Sahoo, and E. D. Raj, “Exploring Communication Efficient Strategies in Federated Learning Systems,” Fed. Learn. Princ. Paradig. Appl., pp. 153–182, Jan. 2024, doi: 10.1201/9781003497196-7/EXPLORING-COMMUNICATION-EFFICIENT-STRATEGIES-FEDERATED-LEARNING-SYSTEMS-AKARSH-NAIR-JAYAKRUSHNA-SAHOO-EBIN-DENI-RAJ.
[89] S. Guo, Z. Su, Z. Tian, and S. Yu, “Utility-Aware Privacy-Preserving Federated Learning through Information Bottleneck,” Proc. - 2022 IEEE 21st Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2022, pp. 680–686, 2022, doi: 10.1109/TRUSTCOM56396.2022.00097.
[90] J. Yuan et al., “Privacy as a Resource in Differentially Private Federated Learning,” Proc. - IEEE INFOCOM, vol. 2023-May, 2023, doi: 10.1109/INFOCOM53939.2023.10228953.
[91] Y. Li, G. Xu, X. Meng, W. Du, and X. Ren, “LF3PFL: A Practical Privacy-Preserving Federated Learning Algorithm Based on Local Federalization Scheme,” Entropy 2024, Vol. 26, Page 353, vol. 26, no. 5, p. 353, Apr. 2024, doi: 10.3390/E26050353.
[92] K. Sehimi, F. Bendaoud, and H. H. Benderbal, “A review of Scalability Solutions in Blockchain-based Electronic Health Record Systems,” ICNSC 2023 - 20th IEEE Int. Conf. Networking, Sens. Control, 2023, doi: 10.1109/ICNSC58704.2023.10319026.
[93] M. M. K. Dandu, J. Jain, S. Vijayabaskar, P. Goel, A. Shivarudra, and S. Bhatt, “Assessing the Impact of Data Imbalance on the Predictive Performance of Machine Learning Models,” Proc. Int. Conf. Contemp. Comput. Informatics, IC3I 2024, pp. 1062–1068, 2024, doi: 10.1109/IC3I61595.2024.10829313.
[94] D. Roy, A. Roy, and U. Roy, “Learning from Imbalanced Data in Healthcare: State-of-the-Art and Research Challenges,” Stud. Comput. Intell., vol. 1132, pp. 19–32, 2024, doi: 10.1007/978-981-99-8853-2_2.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Md Mahfuzur Rahman, Mst Sumya Yeasmin, Lamia Kabir, Tarek Abedin, MD Helal Uddin, Monowar Mahmud, Atiqur Rahman, Mohammad Nur-E-Alam , Md. Rokonuzzaman

This work is licensed under a Creative Commons Attribution 4.0 International License.