Design of Nanofluid-Based Spring Water/Tap Water and Nanoparticles of Fe2O3/ZnO as a Coolant for the Engines
Keywords:
Spring water, Fe2O3,-tap water, ZnO-Spring water, Heat transfer coefficient, Overall heat transfer coefficientAbstract
In this work, an experimental system was established to measure the heat transfer characteristics, including the heat transfer coefficient, overall heat transfer, Nusselt number, and thermal conductivity. The investigation focused on spring water and tap water-based nanofluids containing Fe2O3 and ZnO nanoparticles with particle sizes of 50 nm and 70 nm, respectively. The experiments were conducted inside an automobile engine, studying the effects of varying nanoparticle volume fractions at a constant temperature. Fe2O3 and ZnO concentration in the respective based fluids was verified between 0.02 % and 0.08 % v/v and 0.01 and 0.07 %, respectively. The spring water is not so far used in the previous studies and is much more available in Kurdistan region. Reynolds numbers of nanofluids inside the engine were considered between 1000 to 8000 in a different range as that of the literature review. Reynolds analogy for heat and momentum has been employed in this study. It was observed that the thermo-physio-mechanical properties of nanofluids increased with increase in the concentration of nanoparticles and Reynolds number. However, the friction factor decreased with increasing Reynolds number but increased with an increasing volume concentration of nanoparticles. Generally, the results showed that the enhancement of the effective heat transfer of the nanofluids reached 46%, the overall heat transfer coefficient reached 39%, thermal conductivity reached 21.35% and Nusselt number reached to 38%. at 0.08% volume fraction of Fe2O3/spring water nanofluid. Based on all previous parameters estimated, the designed nanofluids in this study could be classified as a workable nanofluid in many industry applications
Downloads
References
A. Al-damook and I. D. J. Azzawi, “Multi-objective numerical optimum design of natural convection in different configurations of concentric horizontal annular pipes using different nanofluids,” Heat Mass Transf. und Stoffuebertragung, vol. 57, no. 9, pp. 1543–1557, 2021, doi: 10.1007/s00231-021-03051-8. DOI: https://doi.org/10.1007/s00231-021-03051-8
B. Raei, F. Shahraki, M. Jamialahmadi, and S. M. Peyghambarzadeh, “Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger,” J. Therm. Anal. Calorim., vol. 127, no. 3, pp. 2561–2575, 2017, doi: 10.1007/s10973-016-5868-x. DOI: https://doi.org/10.1007/s10973-016-5868-x
I. M. Shahrul, I. M. Mahbubul, R. Saidur, S. S. Khaleduzzaman, and M. F. M. Sabri, “Performance evaluation of a shell and tube heat exchanger operated with oxide based nanofluids,” Heat Mass Transf. und Stoffuebertragung, vol. 52, no. 8, pp. 1425–1433, 2016, doi: 10.1007/s00231-015-1664-6. DOI: https://doi.org/10.1007/s00231-015-1664-6
W. Ajeeb, R. R. S. Thieleke da Silva, and S. M. S. Murshed, “Experimental investigation of heat transfer performance of Al2O3 nanofluids in a compact plate heat exchanger,” Appl. Therm. Eng., vol. 218, no. January 2022, p. 119321, 2023, doi: 10.1016/j.applthermaleng.2022.119321. DOI: https://doi.org/10.1016/j.applthermaleng.2022.119321
E. C. Okonkwo, I. Wole-Osho, I. W. Almanassra, Y. M. Abdullatif, and T. Al-Ansari, An updated review of nanofluids in various heat transfer devices, vol. 145, no. 6. Springer International Publishing, 2021. doi: 10.1007/s10973-020-09760-2. DOI: https://doi.org/10.1007/s10973-020-09760-2
V. Singh, M. Gupta, A. Kumar, S. Luthra, and A. Kumar, “Experimental Investigations of Thermophysical Properties and Convective Heat Transfer of Al2O3 and CuO Nanofluids in a Copper Tube: Proposing New Correlations,” Biointerface Res. Appl. Chem., vol. 13, no. 3, pp. 0–15, 2023, doi: 10.33263/BRIAC133.229. DOI: https://doi.org/10.33263/BRIAC133.229
F. Mebarek-Oudina and I. Chabani, “Review on Nano-Fluids Applications and Heat Transfer Enhancement Techniques in Different Enclosures,” J. Nanofluids, vol. 11, no. 2, pp. 155–168, 2022, doi: 10.1166/jon.2022.1834. DOI: https://doi.org/10.1166/jon.2022.1834
A. Klarasita, A. Bayu, D. Nandiyanto, R. Ragadhita, and T. Kurniawan, “Heat Exchanger Design for Cerium Oxide Nanoparticles Production,” vol. 09, no. 2, pp. 206–217, 2022.
A. H. Abdelaziz, W. M. El-Maghlany, A. Alaa El-Din, and M. A. Alnakeeb, “Mixed convection heat transfer utilizing Nanofluids, ionic Nanofluids, and hybrid nanofluids in a horizontal tube,” Alexandria Eng. J., vol. 61, no. 12, pp. 9495–9508, 2022, doi: 10.1016/j.aej.2022.03.001. DOI: https://doi.org/10.1016/j.aej.2022.03.001
Y. K. Lee, “Akademia Baru The Use of Nanofluids in Domestic Water Heat Exchanger Akademia Baru,” J. Adv. Res. Appl. Math., vol. 3, no. 1, pp. 9–24, 2014.
G. Yalçın, S. Öztuna, A. S. Dalkılıç, and S. Wongwises, “The influence of particle size on the viscosity of water based ZnO nanofluid,” Alexandria Eng. J., vol. 68, pp. 561–576, 2023, doi: 10.1016/j.aej.2022.12.047. DOI: https://doi.org/10.1016/j.aej.2022.12.047
H. F. Kadhim, “Effectiveness Enhancement of the Double Tube Heat Exchanger Using ZnO Nanofluid,” J. Pet. Res. Stud., vol. 12, no. 2, pp. 97–109, 2022, doi: 10.52716/jprs.v12i2.660. DOI: https://doi.org/10.52716/jprs.v12i2.660
N. Kumar and S. S. Sonawane, “Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger,” Int. Commun. Heat Mass Transf., vol. 78, pp. 277–284, 2016, doi: 10.1016/j.icheatmasstransfer.2016.09.009. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.09.009
A. Topuz, T. Engin, A. Alper Özalp, B. Erdoğan, S. Mert, and A. Yeter, “Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel,” J. Therm. Anal. Calorim., vol. 131, no. 3, pp. 2843–2863, 2018, doi: 10.1007/s10973-017-6790-6. DOI: https://doi.org/10.1007/s10973-017-6790-6
J. Albadr, S. Tayal, and M. Alasadi, “Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations,” Case Stud. Therm. Eng., vol. 1, no. 1, pp. 38–44, 2013, doi: 10.1016/j.csite.2013.08.004. DOI: https://doi.org/10.1016/j.csite.2013.08.004
M. Hatami, D. D. Ganji, and M. Gorji-Bandpy, “CFD simulation and optimization of ICEs exhaust heat recovery using different coolants and fin dimensions in heat exchanger,” Neural Comput. Appl., vol. 25, no. 7–8, pp. 2079–2090, 2014, doi: 10.1007/s00521-014-1695-9. DOI: https://doi.org/10.1007/s00521-014-1695-9
I. D. J. Azzawi, S. G. Yahya, L. A. H. Al-Rubaye, and S. K. Ali, “Heat transfer enhancement of different channel geometries using nanofluids and porous media,” Int. J. Heat Technol., vol. 39, no. 4, pp. 1197–11206, 2021, doi: 10.18280/ijht.390417. DOI: https://doi.org/10.18280/ijht.390417
S. M. Jafari, S. S. Jabari, D. Dehnad, and S. A. Shahidi, “Heat Transfer Enhancement in Thermal Processing of Tomato Juice by Application of Nanofluids,” Food Bioprocess Technol., vol. 10, no. 2, pp. 307–316, 2017, doi: 10.1007/s11947-016-1816-9. DOI: https://doi.org/10.1007/s11947-016-1816-9
P. V. Durga Prasad, A. V. S. S. K. S. Gupta, M. Sreeramulu, L. S. Sundar, M. K. Singh, and A. C. M. Sousa, “Experimental study of heat transfer and friction factor of Al2O3 nanofluid in U-tube heat exchanger with helical tape inserts,” Exp. Therm. Fluid Sci., vol. 62, pp. 141–150, 2015, doi: 10.1016/j.expthermflusci.2014.12.006. DOI: https://doi.org/10.1016/j.expthermflusci.2014.12.006
A. M. Hussein, Lingenthiran, K. Kadirgamma, M. M. Noor, and L. K. Aik, “Palm oil based nanofluids for enhancing heat transfer and rheological properties,” Heat Mass Transf. und Stoffuebertragung, vol. 54, no. 10, pp. 3163–3169, 2018, doi: 10.1007/s00231-018-2364-9. DOI: https://doi.org/10.1007/s00231-018-2364-9
V. Kumar, N. Pandya, B. Pandya, and A. Joshi, “Synthesis of metal-based nanofluids and their thermo-hydraulic performance in compact heat exchanger with multi-louvered fins working under laminar conditions,” J. Therm. Anal. Calorim., vol. 135, no. 4, pp. 2221–2235, 2019, doi: 10.1007/s10973-018-7304-x. DOI: https://doi.org/10.1007/s10973-018-7304-x
M. Zarringhalam, A. Karimipour, and D. Toghraie, “Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO-Water nanofluid,” Exp. Therm. Fluid Sci., vol. 76, pp. 342–351, 2016, doi: 10.1016/j.expthermflusci.2016.03.026. DOI: https://doi.org/10.1016/j.expthermflusci.2016.03.026
E. A. Chavez Panduro, F. Finotti, G. Largiller, and K. Y. Lervåg, “A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors,” Appl. Therm. Eng., vol. 211, no. March, p. 118346, 2022, doi: 10.1016/j.applthermaleng.2022.118346. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118346
R. Lotfi, A. M. Rashidi, and A. Amrollahi, “Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger,” Int. Commun. Heat Mass Transf., vol. 39, no. 1, pp. 108–111, 2012, doi: 10.1016/j.icheatmasstransfer.2011.10.002. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2011.10.002
A. Hajatzadeh Pordanjani, S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian, and S. Wongwises, “An updated review on application of nanofluids in heat exchangers for saving energy,” Energy Convers. Manag., vol. 198, no. July, p. 111886, 2019, doi: 10.1016/j.enconman.2019.111886. DOI: https://doi.org/10.1016/j.enconman.2019.111886
K. M. Shareef and S. G. Muhamad, “Natural and drinking water quality in Erbil, Kurdistan,” Curr. World Environ., vol. 3, no. 2, pp. 227–238, 2008, doi: 10.12944/cwe.3.2.04. DOI: https://doi.org/10.12944/CWE.3.2.04
L. S. Sundar, E. V. Ramana, M. K. Singh, J. Gracio, and A. C. M. Sousa, “Preparation, Thermal and Rheological Properties of Propylene Glycol and Water Mixture Based Fe3O4 Nanofluids,” J. Nanofluids, vol. 3, no. 3, pp. 200–209, 2014, doi: 10.1166/jon.2014.1108. DOI: https://doi.org/10.1166/jon.2014.1108
E. D. Bojesen, M. Sondergaard, M. Christensen, and B. B. Iversen, “Particle size effects on the thermal conductivity of ZnO,” AIP Conf. Proc., vol. 1449, pp. 335–338, 2012, doi: 10.1063/1.4731565. DOI: https://doi.org/10.1063/1.4731565
“National Instittue for Standards and Technology, US, NIST Chemistry WebBook (2023), https://webbook.nist.gov/cgi/cbook.cgi?ID=C1317608&Type=JANAFS&Table=on,” p. 1317608, 2023.
“Water - Thermal Conductivity vs. Temperature.” https://www.engineeringtoolbox.com/water-liquid-gas-thermal-conductivity-temperature-pressure-d_2012.html.
B. Adrian, CONVECTION HEAT Other books by Adrian Bejan : 2013.
Engineering ToolBox, “Water - Specific Heat vs. Temperature,” Water - Specific Heat vs. Temperature. p. online, 2004. [Online]. Available: https://www.engineeringtoolbox.com/specific-heat-capacity-water-d_660.html
J. Saari, “Faculty of Technology LUT Energy HEAT EXCHANGER,” pp. 1–101, 2011.
R. S. Subramanian, “Heat transfer in Flow Through Conduits,” Dep. Chem. Biomol. Eng. Clarkson Univ., vol. 1, pp. 1–9, 2006.
N. Kumar, S. S. Sonawane, and S. H. Sonawane, “Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid,” Int. Commun. Heat Mass Transf., vol. 90, no. January, pp. 1–10, 2018, doi: 10.1016/j.icheatmasstransfer.2017.10.001. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2017.10.001
Z. Haddad, H. F. Oztop, E. Abu-Nada, and A. Mataoui, “A review on natural convective heat transfer of nanofluids,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 5363–5378, 2012, doi: 10.1016/j.rser.2012.04.003. DOI: https://doi.org/10.1016/j.rser.2012.04.003
X. Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” Int. J. Therm. Sci., vol. 46, no. 1, pp. 1–19, 2007, doi: 10.1016/j.ijthermalsci.2006.06.010. DOI: https://doi.org/10.1016/j.ijthermalsci.2006.06.010
K. Bashirnezhad et al., “Viscosity of nanofluids: A review of recent experimental studies,” Int. Commun. Heat Mass Transf., vol. 73, pp. 114–123, 2016, doi: 10.1016/j.icheatmasstransfer.2016.02.005. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.02.005
V. Nageswara Rao and B. Ravi Sankar, “Heat transfer and friction factor investigations of CuO nanofluid flow in a double pipe U-bend heat exchanger,” Mater. Today Proc., vol. 18, pp. 207–218, 2019, doi: 10.1016/j.matpr.2019.06.294. DOI: https://doi.org/10.1016/j.matpr.2019.06.294
P. K. Vijayan, A. K. Nayak, and N. Kumar, Governing differential equations for natural circulation systems. 2019. doi: 10.1016/b978-0-08-102486-7.00003-2. DOI: https://doi.org/10.1016/B978-0-08-102486-7.00003-2
B. S. Petukhov, “Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties,” Adv. Heat Transf., vol. 6, no. C, pp. 503–564, 1970, doi: 10.1016/S0065-2717(08)70153-9. DOI: https://doi.org/10.1016/S0065-2717(08)70153-9
L. Syam Sundar, M. K. Singh, and A. C. M. Sousa, “Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications,” Int. Commun. Heat Mass Transf., vol. 44, pp. 7–14, 2013, doi: 10.1016/j.icheatmasstransfer.2013.02.014. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014
F. Flow, H. Transfer, and M. Transfer, “Coulson & Richardson ’ s”.
R. Aghayari, H. Maddah, F. Ashori, A. Hakiminejad, and M. Aghili, “Effect of nanoparticles on heat transfer in mini double-pipe heat exchangers in turbulent flow,” Heat Mass Transf. und Stoffuebertragung, vol. 51, no. 3, pp. 301–306, 2015, doi: 10.1007/s00231-014-1415-0. DOI: https://doi.org/10.1007/s00231-014-1415-0
U. Roy and P. K. Roy, Advances in heat intensification techniques in shell and tube heat exchanger. Elsevier Inc., 2020. doi: 10.1016/B978-0-12-819422-5.00007-4. DOI: https://doi.org/10.1016/B978-0-12-819422-5.00007-4
Published
How to Cite
Issue
Section
Copyright (c) 2023 Kaiwan Musleh Faisal, Badiea Abdullah Mohammed
This work is licensed under a Creative Commons Attribution 4.0 International License.