Single Layer Metamaterial Superstrate for Gain Enhancement of A Microstrip Antenna Array

https://doi.org/10.24237/djes.2024.17211

Authors

  • Surur Hassan Ali Department of Electrical Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq
  • Ali Khalid Jassim Department of Electrical Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq

Keywords:

Metamaterial Superstrate technique, Pentagonal microstrip patch antenna arrays, Quarter-wave transformer, X-band applications

Abstract

This study focuses on creating and analyzing pentagonal microstrip patch antenna arrays with one, two, and three elements for use in the 10 GHz X-band range, utilizing a metamaterial (MTM) superstrate technique. The MTM superstrate, composed of open circular ring cells, is tailored for a 1×2 array with a 10×8 cell arrangement covering an area of 45×36 mm². A 1×3 array has a 14×12 cell configuration spanning 63×54 mm². Positioned beneath the radiating elements and optimized with a quarter-wave transformer for impedance matching, the superstrate significantly enhances antenna performance. The MTM superstrate alters the radiation pattern and increases the gain by approximately 2 dB, demonstrating a gain improvement of around 27% for high-gain applications in the X-band frequency range. For the 1×2 array, the gain increases from 7.52 dB to 9.58 dB, representing a 27.38% improvement, while the input reflection coefficient improves from -48.6 dB to -58.068 dB, reflecting a 19.5% enhancement. Similarly, for the 1×3 array, the gain rises from 9.69 dB to 11.6 dB, showing a 19.73% increase, and the input reflection coefficient improves from -57.46 dB to -60.64 dB, indicating a 5.54% improvement and a good radiation efficiency of about 79.11%. This work involves designing and simulating the proposed antenna arrays using the Computer Simulation Technology (CST) software.

Downloads

Download data is not yet available.

References

P. A. Nageswara Rao, Y. Sukanya, and C. Manohar Kumar, "Design and Performance of Π-Shape Slotted Microstrip Patch Antenna Arrays," in 2022 International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies (BHARAT), Visakhapatnam, India, 2022, pp. 83-88. doi: 10.1109/BHARAT53139.2022.00027. DOI: https://doi.org/10.1109/BHARAT53139.2022.00027

L. L-Y and Z-H. Tu, "Low-profile and broadband microstrip antenna with pattern diversity," Microw. Opt. Technol. Lett., vol. 65, pp. 2988-2994, 2023. doi: 10.1002/mop.33819. DOI: https://doi.org/10.1002/mop.33819

Y. Liu and H. Liu, "Target Height Measurement under Complex Multipath Interferences without Exact Knowledge on the Propagation Environment," Remote Sens., vol. 14, no. 13, 2022, Art. no. 33099. doi: 10.3390/rs14133099. DOI: https://doi.org/10.3390/rs14133099

A. Akinyele et al., "Investigation of Small-Scale and Multipath Fading of Radio Wave Propagation in a Complex Building Environment," Int. J. Commun. Antenna Propag., vol. 12, no. 6, 2022, Art. no. 21849. doi: 10.15866/icecap.v12i6.21849. DOI: https://doi.org/10.15866/irecap.v12i6.21849

R. B. Nassir and A. K. Jassim, "Design of mimo antenna for wireless communication applications," J. Eng. Sustain. Dev., vol. 26, no. 4, pp. 36–43, 2022. DOI: https://doi.org/10.31272/jeasd.26.4.4

D. M. Pozar, Microwave Engineering, 4th ed. Wiley, 2011.

G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Artech House, 1980.

S. R. Best, Microstrip and Printed Antennas: New Trends, Techniques and Applications. Wiley, 2011.

A. T. Alphones, Design of Microstrip Patch Antennas. Artech House, 2011.

K. J. Vinoy and J. G. Malherbe, Analysis and Design of Multilayered Microstrip Antennas for Wireless Applications. Artech House, 2000.

N. Yan, D. Song, Y. Luo, and K. Ma, "A sequentially rotated feeding circularly polarized stacked patch antenna array based on SISL," Wiley J., vol. 65, no. 1, pp. 256-263, Jan. 2023. DOI: https://doi.org/10.1002/mop.33469

A. K. Nghaimesh and A. K. Jassim, "Triple-band circular patch microstrip antenna for wireless communication," J. Eng. Sustain. Dev., vol. 28, no. 1, pp. 64–74, 2024. DOI: https://doi.org/10.31272/jeasd.28.1.5

M. Bahare et al., "Mutual coupling reduction in microstrip array antenna by employing cut side patches and EBG structures," Prog. Electromagn. Res. M, 2020. doi: 10.2528/PIERM19100703. DOI: https://doi.org/10.2528/PIERM19100703

Y. He et al., "Wideband decoupling technique for two-element antenna array using pixel neutralization line," Microw. Opt. Technol. Lett., vol. 64, no. 4, pp. 33363, 2022. doi: 10.1002/mop.33363. DOI: https://doi.org/10.1002/mop.33363

A. Khalid, Jassim, R. H. Thaher, "Enhancement gain of broadband elliptical microstrip patch array antenna with mutual coupling for wireless communication," Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 1, pp. 217-225, Jan. 2019. doi: 10.11591/IJEECS.v13.i1.pp217-225. DOI: https://doi.org/10.11591/ijeecs.v13.i1.pp217-225

A. Rashidifar and K. E. Drenkhahn, "Reduction of Mutual Coupling between Dual-Polarized Antenna Elements Using Defected Ground Structures," in Proc. 17th European Conf. on Antennas and Propagation (EuCAP), Florence, Italy, 2023, pp. 1-5. doi: 10.23919/EuCAP57121.2023.1013363. DOI: https://doi.org/10.23919/EuCAP57121.2023.10133636

W. Chang et al., "Mutual coupling reduction in antenna arrays using the novel mushroom electromagnetic band gap and defected ground structure," Microw. Opt. Technol. Lett., vol. 66, 2024, Art. no. e34084. Doi: 10.1002/mop.34084. DOI: https://doi.org/10.1002/mop.34084

S. Barman et al., "Gain and Directivity enhancement of microstrip patch antenna using metamaterial superstrate containing rectangular split ring resonators," 2023. doi: 10.21203/rs.3.rs-1421742/v1. DOI: https://doi.org/10.21203/rs.3.rs-1421742/v1

P. K. Gupta, "A Microstrip Antenna Using I-Shaped Metamaterial Superstrate with Enhanced Gain for Multiband Wireless Systems," Micromachines, vol. 14, no. 2, 2023, Art. no. 0412. doi: 10.3390/mi14020412. DOI: https://doi.org/10.3390/mi14020412

R. Mahdi Salih and A. K. Jassim, "Microstrip patch antenna with metamaterial using superstrate technique for wireless communication," Bull. Electr. Eng. Inform., vol. 10, no. 4, pp. 2722, 2021. doi: 10.11591/EEI.V10I4.2722. DOI: https://doi.org/10.11591/eei.v10i4.2722

C. Arora, S. S. Pattnaik, and R. N. Baral, "Metamaterial inspired DNG superstrate for performance improvement of microstrip patch antenna array," Int. J. Microwave Wireless Technol., vol. 10, no. 3, pp. 318-327, 2018. doi: 10.1017/S1759078717001428. DOI: https://doi.org/10.1017/S1759078717001428

H. Alwareth et al., "A Wideband High-Gain Microstrip Array Antenna Integrated with Frequency-Selective Surface for Sub-6 GHz 5G Applications," Micromachines, vol. 13, 1215, 2022. Available: https://doi.org/10.3390/mi13081215. DOI: https://doi.org/10.3390/mi13081215

F. Ouberri, A. Tajmouati, N. Chahboun, L. El Abdellaoui, and M. Latrach, "A novel wideband circularly-polarized microstrip antenna array based on DGS for wireless power transmission," Telkomnika, vol. 20, no. 3, pp. 485–493, Jun. 2022. doi: 10.12928/TELKOMNIKA.v20i3.21711 DOI: https://doi.org/10.12928/telkomnika.v20i3.21711

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. John Wiley & Sons, Wiley-Interscience, 2015.

B. Olatujoye and J. C. Saturday, "Design and Performance Analysis of 4-Element Multiband Circular Microstrip Antenna Array for Wireless Communications," IOSR J. Electron. Commun. Eng., vol. 18, no. 1, Ser. I, pp. 01-07, Jan.–Feb. 2023. DOI 10.9790/2834-1801010107.

S. Lou, S. Qian, and W. Wang, "Influence of Random Errors in Element Positions on Performance of Antenna Arrays Considering Mutual Coupling Effect," IEEE Antennas Wireless Propag. Lett., 2023. doi: 10.1109/LAWP.2023.3281569. DOI: https://doi.org/10.1109/LAWP.2023.3281569

O. Ifeanyi F., K. M. Udofia, and K. M. Udofia, "Comparative Analysis of Microstrip Antenna Arrays with Diverse Feeding Techniques," J. Eng. Res. Rep., vol. 26, no. 1, pp. 18-38, 2024. Article no. JERR.111205. ISSN: 2582-2926. DOI: 10.9734/JERR/2024/v26i11060.

M. Sohail, "Near field focusing of rectangular microstrip patch antenna array," February 2016.

B. Olatujoye and J. C. Saturday, "Design and performance analysis of 4-element multiband circular microstrip antenna array for wireless communications," IOSR J. Electron. Commun. Eng., vol. 18, no. 1, pp. 1-7, 2023.

R. N. Leela, "1×4 Rectangular Patch Array Operating at 10GHz Using Corporate Feeding Technique," Int. J. Eng. Dev. Res., vol. 5, no. 2, 2017. ISSN: 2321-9939. Available at: www.ijedr.org.

H. S. Gally, Z. A. Ahmed, and A. H. Abood, "Mutual Coupling Reduction In Microstrip Antenna Array Using Ebg," J. Basrah Res. Sci., vol. 44, no. 1A, 2018. Available: http://brsj.cepsbasra.edu.iq/.

V. N. Lakshmana Kumar, M. Satyanarayana, and S. P. Singh, "A Novel Technique for Sidelobe and Backlobe Reduction in Rectangular Microstrip Antenna Array Using Defected Ground Structures," Int. J. Appl. Eng. Res., vol. 13, no. 22, pp. 15961-15966, 2018.

E. K. I. Hamad and A. Abdelaziz, "Performance of a Metamaterial-based 1×2 Microstrip Patch Antenna Array for Wireless Communications Examined by Characteristic Mode Analysis," Electromagnetics, Radio Eng., vol. 28, no. 4, Dec. 2019. doi: 10.13164/re.2019.0680. DOI: https://doi.org/10.13164/re.2019.0680

J. Maharjan and D.-Y. Choi, "Four-Element Microstrip Patch Array Antenna with Corporate-Series Feed Network for 5G Communication," Hindawi Int. J. Antennas Propag., 2020, Art. ID 8760297. Available: https://doi.org/10.1155/2020/8760297. DOI: https://doi.org/10.1155/2020/8760297

S. Dharmpatre and M. Sutaone, "Design and Characterization Analysis of Microstrip Patch Array Antenna with Dumbbell-shaped DGS for ISM Band Applications," Turk. J. Comput. Math. Educ., vol. 12, no. 9, pp. 2652–2663, 2021.

S. Kumar D and S. Suganthi, "Novel hybrid metamaterial to improve the performance of a beamforming antenna," J. Phys. Conf. Ser., vol. 1921, 2021, Art. no. 012020. Doi: 10.1088/1742-6596/1921/1/012020. DOI: https://doi.org/10.1088/1742-6596/1921/1/012020

A. D. Santoso, F. B. Cahyono, H. B. Bagus, and M. H. Saleh, "Parametric Study of Rectangular Microstrip Array Antenna at 2.2 GH," in Proc. 2023 Int. Conf. on Advance Transportation, Engineering, pp. 154–167. doi: 10.2991/978-94-6463-092-3_14. DOI: https://doi.org/10.2991/978-94-6463-092-3_14

O. I. F. Udofia, K. M. Udofia, and K. M. Udofia, "Comparative Analysis of Microstrip Antenna Arrays with Diverse Feeding Techniques," J. Eng. Res. Rep., vol. 26, no. 1, pp. 18-38, 2024. Article no. JERR.111205. ISSN: 2582-2926. DOI: https://doi.org/10.9734/jerr/2024/v26i11060

Published

2024-06-07

How to Cite

[1]
S. Hassan Ali and A. Khalid Jassim, “Single Layer Metamaterial Superstrate for Gain Enhancement of A Microstrip Antenna Array”, DJES, vol. 17, no. 2, pp. 144–172, Jun. 2024.