Thermal Performance Enhancement of Triplex Tube Heat Storage Using Metal Foam
Keywords:
Triplex Tube Heat exchanger (TTHX), Heat transfer fluid (HTF), Copper foam,, Melting time latent heat thermal energy storage, Phase change materialAbstract
Latent heat thermal energy storage (LHTES) systems are essential for storing solar energy during sunshine and using it during the absence of solar radiation. The energy storage systems of phase-change materials (PCMs) possess comparatively low thermal conductivity values, which greatly decrease their performance. Significant thermal enhancement of PCM behaviour could be achieved adding a porous metal foam. In this work, experimental analysis was conducted on a vertical LHTES with PCM by using water as a heat transfer fluid (HTF). The effect of adding a porous metal foam on the charging process was investigated. Experimental observations showed the foamed TTHX had a superior melting rate over the non-foamed TTHX. For both TTHX configurations, the needed time for the charging process decreased with the addition of porous metal foam. The effect of Cu foam was significant for the foamed TTHX. The reduction in the whole melting time for the foamed and non-foamed TTHX was 43% for the same HTF temperature of 69 °C.
Downloads
References
P. Verma, G. Varun, S.K. Singal, Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material, Renew. Sustain. Energy Rev. 12 (4) (2008) 999–1031. DOI: https://doi.org/10.1016/j.rser.2006.11.002
Jegadheeswaran, S., and Sanjay D. Pohekar. "Performance enhancement in latent heat thermal storage system: a review." Renewable and Sustainable energy reviews 13, no. 9 (2009): 2225-2244. DOI: https://doi.org/10.1016/j.rser.2009.06.024
D. Zhou, C.-Y. Zhao, Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Appl. Energy 92 (2012) 593–605. DOI: https://doi.org/10.1016/j.apenergy.2011.08.025
S. Riffat, B. Mempouo,W. Fang, Phase change material developments: a review, Int. J. Ambient Energy (2013) doi:10.1080/01430750.2013.823106. DOI: https://doi.org/10.1080/01430750.2013.823106
A. Agrawal, R.M. Sarviya, A review of research and development work on solar dryers with heat storage, Int. J. Sustain. Energy (2014) doi:10.1080/14786451.2014.930464. DOI: https://doi.org/10.1080/14786451.2014.930464
Abdulateef, Ammar M., Sohif Mat, Jasim Abdulateef, Kamaruzzaman Sopian, and Abduljalil A. Al-Abidi. "Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review." Renewable and Sustainable Energy Reviews 82 (2018): 1620-1635. DOI: https://doi.org/10.1016/j.rser.2017.07.009
Jouhara, Hussam, et al. "Latent thermal energy storage technologies and applications: A review." International Journal of Thermofluids 5 (2020): 100039. DOI: https://doi.org/10.1016/j.ijft.2020.100039
Al-Abidi, A. A., Mat, S., Sopian, K., Sulaiman, M. Y., & Mohammad, A. T. (2013). Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Applied thermal engineering, 53(1), 147-156. DOI: https://doi.org/10.1016/j.applthermaleng.2013.01.011
Al-Abidi, A. A., Mat, S., Sopian, K., Sulaiman, M. Y., & Mohammad, A. T. (2013). Experimental study of PCM melting in triplex tube thermal energy storage for liquid desiccant air conditioning system. Energy and buildings, 60, 270-279. DOI: https://doi.org/10.1016/j.enbuild.2013.01.031
Al-Abidi, A., Mat, S., Sopian, K., Sulaiman, Y., & Mohammad, A. (2016). Heat transfer enhancement for PCM thermal energy storage in triplex tube heat exchanger. Heat Transfer Engineering, 37(7-8), 705-712. DOI: https://doi.org/10.1080/01457632.2015.1067090
Abdulateef, A. M., Abdulateef, J., Al-Abidi, A. A., Sopian, K., Mat, S., & Mahdi, M. S. (2019). A combination of fins-nanoparticle for enhancing the discharging of phase-change material used for liquid desiccant air conditioning unite. Journal of Energy Storage, 24, 100784. DOI: https://doi.org/10.1016/j.est.2019.100784
Abdulateef, A. M., Abdulateef, J., Sopian, K., Mat, S., & Ibrahim, A. (2019). Optimal fin parameters used for enhancing the melting and solidification of phase-change material in a heat exchanger unite. Case Studies in Thermal Engineering, 14, 100487. DOI: https://doi.org/10.1016/j.csite.2019.100487
Abdulateef, A. M., Jaszczur, M., Hassan, Q., Anish, R., Niyas, H., Sopian, K., & Abdulateef, J. (2021). Enhancing the melting of phase change material using a fins–nanoparticle combination in a triplex tube heat exchanger. Journal of Energy Storage, 35, 102227.
Abdulateef, A. M., Jaszczur, M., Hassan, Q., Anish, R., Niyas, H., Sopian, K., & Abdulateef, J. (2021). Enhancing the melting of phase change material using a fins–nanoparticle combination in a triplex tube heat exchanger. Journal of Energy Storage, 35, 102227. DOI: https://doi.org/10.1016/j.est.2020.102227
Hassan, A. K., Abdulateef, J., Mahdi, M. S., & Hasan, A. F. (2020). Experimental evaluation of thermal performance of two different finned latent heat storage systems. Case Studies in Thermal Engineering, 21, 100675. DOI: https://doi.org/10.1016/j.csite.2020.100675
Mahdi, J. M., & Nsofor, E. C. (2016). Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system. Applied Thermal Engineering, 108, 596-604. DOI: https://doi.org/10.1016/j.applthermaleng.2016.07.130
Mahdi, J. M., & Nsofor, E. C. (2017). Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination. International journal of heat and mass transfer, 109, 417-427. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.016
Mahdi, J. M., & Nsofor, E. C. (2018). Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins. Applied Energy, 211, 975-986. DOI: https://doi.org/10.1016/j.apenergy.2017.11.082
Gong X, Mujumdar AS. A new solar receiver thermal store for space-based activities using multiple composite phase-change materials. ASME J Sol Energy Eng 1995;117:215–20. DOI: https://doi.org/10.1115/1.2847798
Fang M, Chen G. Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Eng 2007;27:994–1000. DOI: https://doi.org/10.1016/j.applthermaleng.2006.08.001
Seeniraj RV, Narasimhan NL. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy 2008;82: 535–42. DOI: https://doi.org/10.1016/j.solener.2007.11.001
Zho GL, Tan ZC, Lan XZ, Sun LX, Zhang T. Preparation and characterization of microencapsulated hexadecane used for thermal energy storage. Chin Chem Lett 2004;15:729–32.
Rao Y, Dammel F, Stephen P, Lin G. Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat Mass Transf 2007;44:175–86. DOI: https://doi.org/10.1007/s00231-007-0232-0
Mesalhy O, Lafdi K, Elgafi A, Bowman K. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy ConversManage 2005;46:847–67. DOI: https://doi.org/10.1016/j.enconman.2004.06.010
Kim S, Drzal LT. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells 2009;93:136–42. DOI: https://doi.org/10.1016/j.solmat.2008.09.010
Mahdi, J. M., & Nsofor, E. C. (2017). Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination. Applied energy, 191, 22-34. DOI: https://doi.org/10.1016/j.apenergy.2016.11.036
Mahdi, J. M., Mohammed, H. I., Hashim, E. T., Talebizadehsardari, P., & Nsofor, E. C. (2020). Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system. Applied Energy, 257, 113993. DOI: https://doi.org/10.1016/j.apenergy.2019.113993
Published
How to Cite
Issue
Section
Copyright (c) 2022 Jihad Majeed, Jasim Abdulateef, Michał Dudek
This work is licensed under a Creative Commons Attribution 4.0 International License.