Incorporation of Spiral fins for improvement of discharging rate in Latent Heat Storage Unit
DOI:
https://doi.org/10.24237/djes.2025.18403Keywords:
Latent Heat Storage Unit (LHSU), Shell and Tube, Phase Change Material (PCM), Spiral fins, DischargingAbstract
Latent Heat Storage Units (LHSUs) are widely used for low-temperature thermal applications, but their energy retrieval rate during solidification is restricted by the low thermal conductivity of most phase change materials (PCMs). Enhancing heat transfer during discharging is therefore essential for improving system efficiency and enabling practical solar thermal integration. This study experimentally evaluates the effectiveness of spiral fins in augmenting the discharging rate of a shell-and-tube LHSU filled with stearic acid as PCM and water as the heat transfer fluid (HTF). A custom-developed test rig with adjustable orientation (vertical, horizontal, and inclined) was fabricated, and temperature measurements were captured using 45 K-type thermocouples distributed over five axial planes within the annular PCM region. Discharging experiments were performed at an HTF inlet temperature of 28 °C and 5 LPM flow rate. The results confirm that spiral fins substantially accelerate solidification, reducing the time required to reach an average PCM temperature of 35 °C by 26.5%, 25.96% and 24.37% at the middle section for vertical, horizontal, and inclined orientations, respectively. For the entire annulus, the reduction ranged from 17.2% to 19.58%, demonstrating orientation-independent enhancement. The dominance of conduction during solidification minimizes buoyancy-driven convective effects, making spiral fins a reliable design feature for practical installations irrespective of mounting angle. The findings validate spiral fins as a robust heat transfer enhancement method for LHSUs and provide experimental insights for system optimization in real-world thermal energy storage applications.
Downloads
References
[1] H. Mehling and L. F. Cabeza, “Phase change materials and their basic properties,” in Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design, Dordrecht: Springer Netherlands, 2007, pp. 257–277.
[2] K. Du, J. Calautit, Z. Wang, Y. Wu, and H. Liu, “A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges,” Appl. Energy, vol. 220, pp. 242–273, 2018.
[3] A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renew. Sustain. Energy Rev., vol. 13, no. 2, pp. 318–345, 2009.
[4] S. Tomassetti et al., “Thermal properties of alternative phase change materials for solar thermal applications,” Int. J. Heat Technol., vol. 41, no. 3, 2023.
[5] C. Ding, J. Pei, S. Wang, and Y. Wang, “Evaluation and comparison of thermal performance of latent heat storage units with shell-and-tube, rectangular, and cylindrical configurations,” Appl. Therm. Eng., vol. 218, p. 119364, 2023.
[6] D. S. Mehta, K. Solanki, M. K. Rathod, and J. Banerjee, “Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation,” J. Energy Storage, vol. 23, pp. 344–362, 2019.
[7] D. S. Mehta, K. Solanki, M. K. Rathod, and J. Banerjee, “Influence of orientation on thermal performance of shell and tube latent heat storage unit,” Appl. Therm. Eng., vol. 157, p. 113719, 2019.
[8] A. M. S. Aljumaily, A. A. Mohammed, and S. J. Aljabair, “Effect of mass flow rate in a shell and tube heat exchanger of different inner tube geometries during solidification of phase change material,” Diyala J. Eng. Sci., pp. 136–156, 2024.
[9] A. M. S. Aljumaily, A. A. Mohammed, and S. J. Aljabair, “Effect of inner tube shapes in a heat exchanger on a solidification of phase change material,” SSRN 4427085.
[10] A. M. S. Aljumaily, A. A. M. Hayes Al-Jubouri, and N. F. H. Al-Jubouri, “Improving the thermal storage system (LHTES): A theoretical and experimental study,” Int. J. Mech. Therm. Eng., vol. 5, no. 1, pp. 41–55, 2024.
[11] Y. B. Tao and Y. L. He, “A review of phase change material and performance enhancement method for latent heat storage system,” Renew. Sustain. Energy Rev., vol. 93, pp. 245–259, 2018.
[12] B. Buonomo, O. Manca, S. Nardini, and R. E. Plomitallo, “Numerical study on phase change material with metal foam in shell and convergent/divergent tube thermal energy storage systems with external heat losses,” Int. J. Heat Technol., vol. 42, no. 1, 2024.
[13] H. Niyas, C. R. C. Rao, and P. Muthukumar, “Performance investigation of a lab-scale latent heat storage prototype–experimental results,” Solar Energy, vol. 155, pp. 971–984, 2017.
[14] L. Kalapala and J. K. Devanuri, “Effect of orientation on thermal performance of a latent heat storage system equipped with annular fins–an experimental and numerical investigation,” Appl. Therm. Eng., vol. 183, p. 116244, 2021.
[15] L. Pu, S. Zhang, L. Xu, and Y. Li, “Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit,” Appl. Therm. Eng., vol. 166, p. 114753, 2020.
[16] X. Yang et al., “Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins,” Appl. Energy, vol. 202, pp. 558–570, 2017.
[17] L. L. Tian, X. Liu, S. Chen, and Z. G. Shen, “Effect of fin material on PCM melting in a rectangular enclosure,” Appl. Therm. Eng., vol. 167, p. 114764, 2020.
[18] S. Tiari, A. Hockins, and K. Shank, “Experimental study of a latent heat thermal energy storage system assisted by varying annular fins,” J. Energy Storage, vol. 55, p. 105603, 2022.
[19] S. Agrawal, P. M. Sutheesh, L. G. Kirankumar, and B. Rohinikumar, “Numerical investigations on thermal performance of latent heat thermal energy storage system with novel corrugated annular fins in PCM,” J. Energy Storage, vol. 125, p. 116902, 2025.
[20] Y. K. Liu and Y. B. Tao, “Experimental and numerical investigation of longitudinal and annular finned latent heat thermal energy storage unit,” Solar Energy, vol. 243, pp. 410–420, 2022.
[21] A. A. Al-Abidi et al., “Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins,” Energy Build., vol. 68, pp. 33–41, 2014.
[22] M. J. Hosseini, A. A. Ranjbar, M. Rahimi, and R. Bahrampoury, “Experimental and numerical evaluation of longitudinally finned latent heat storage systems,” Energy Build., vol. 99, pp. 263–272, 2015.
[23] N. S. Dhaidan et al., “Experimental investigation of thermal characteristics of phase change material in finned heat exchangers,” J. Energy Storage, vol. 71, p. 108162, 2023.
[24] M. K. Rathod and J. Banerjee, “Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins,” Appl. Therm. Eng., vol. 75, pp. 1084–1092, 2015.
[25] P. Wang et al., “Numerical investigation of PCM melting process in sleeve tube with internal fins,” Energy Convers. Manag., vol. 110, pp. 428–435, 2016.
[26] M. Joybari, F. Haghighat, S. Seddegh, and A. A. Al-Abidi, “Heat transfer enhancement of phase change materials by fins under simultaneous charging and discharging,” Energy Convers. Manag., vol. 152, pp. 136–156, 2017.
[27] M. Kazemi, M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury, “Improvement of longitudinal fins configuration in latent heat storage systems,” Renew. Energy, vol. 116, pp. 447–457, 2018.
[28] C. Yu et al., “Melting performance enhancement of a latent heat storage unit using gradient fins,” Int. J. Heat Mass Transf., vol. 150, p. 119330, 2020.
[29] D. S. Mehta, B. Vaghela, M. K. Rathod, and J. Banerjee, “Enrichment of heat transfer in a latent heat storage unit using longitudinal fins,” Heat Transf., vol. 49, no. 5, pp. 2659–2685, 2020.
[30] L. A. Khan and M. M. Khan, “Role of orientation of fins in performance enhancement of a latent thermal energy storage unit,” Appl. Therm. Eng., vol. 175, p. 115408, 2020.
[31] A. Hosseini, A. Banakar, S. Gorjian, and A. Jafari, “Experimental and numerical investigation of the melting behavior of a phase change material in a horizontal latent heat accumulator with longitudinal and annular fins,” J. Energy Storage, vol. 82, p. 110563, 2024.
[32] S. Zhang, S. Mancin, and L. Pu, “A review and prospective of fin design to improve heat transfer performance of latent thermal energy storage,” J. Energy Storage, vol. 62, p. 106825, 2023.
[33] A. Rozenfeld, Y. Kozak, T. Rozenfeld, and G. Ziskind, “Experimental demonstration, modeling and analysis of a novel latent-heat thermal energy storage unit with a helical fin,” Int. J. Heat Mass Transf., vol. 110, pp. 692–709, 2017.
[34] D. S. Mehta, B. Vaghela, M. K. Rathod, and J. Banerjee, “Thermal performance augmentation in latent heat storage unit using spiral fin: an experimental analysis,” J. Energy Storage, vol. 31, p. 101776, 2020.
[35] D. S. Mehta et al., “Heat transfer enhancement using spiral fins in different orientations of latent heat storage unit,” Int. J. Therm. Sci., vol. 169, p. 107060, 2021.
[36] X. Sun et al., “Solidification enhancement in a triple-tube latent heat energy storage system using twisted fins,” Energies, vol. 14, no. 21, p. 7179, 2021.
[37] S. A. Zonouzi and A. Dadvar, “Numerical investigation of using helical fins for the enhancement of the charging process of a latent heat thermal energy storage system,” J. Energy Storage, vol. 49, p. 104157, 2022.
[38] K. Guedri et al., “Solidification acceleration of phase change material in a horizontal latent heat thermal energy storage system by using spiral fins,” Case Stud. Therm. Eng., vol. 48, p. 103157, 2023.
[39] H. Li, C. Hu, D. Tang, and Z. Rao, “Improving heat storage performance of shell-and-tube unit by using structural-optimized spiral fins,” J. Energy Storage, vol. 79, p. 110212, 2024.
[40] X. Miao et al., “Performance enhancement of latent heat thermal energy storage system by using spiral fins in phase change material solidification process,” Process Saf. Environ. Prot., vol. 176, pp. 568–579, 2023.
[41] F. He, C. Hu, W. Gao, S. Li, and X. Meng, “Effect of inclination angles on heat transfer characteristics of solid and perforated spiral finned heat exchangers,” Int. Commun. Heat Mass Transf., vol. 164, p. 108920, 2025.
[42] L. Bo et al., “Twisted-fin parametric study to enhance the solidification performance of phase-change material in a shell-and-tube latent heat thermal energy storage system,” J. Comput. Des. Eng., vol. 9, no. 6, pp. 2297–2313, 2022.
[43] C. Nie, X. Liu, Z. Rao, and J. Liu, “Discharging performance evaluation and optimization of a latent heat thermal energy storage unit with helm-shaped fin,” Appl. Therm. Eng., vol. 236, p. 121595, 2024.
[44] A. Pizzolato, A. Sharma, K. Maute, A. Sciacovelli, and V. Verda, “Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization,” Appl. Energy, vol. 208, pp. 210–227, 2017.
[45] L. Lv et al., “Experimental study on a pilot-scale medium-temperature latent heat storage system with various fins,” Renew. Energy, vol. 205, pp. 499–508, 2023.
[46] P. B. Salunkhe, “Investigations on latent heat storage materials for solar water and space heating applications,” J. Energy Storage, vol. 12, pp. 243–260, 2017.
[47] G. Alva, L. Liu, X. Huang, and G. Fang, “Thermal energy storage materials and systems for solar energy applications,” Renew. Sustain. Energy Rev., vol. 68, pp. 693–706, 2017.
[48] M. R. Reddigari, N. Nallusamy, A. P. Bappala, and H. R. Konireddy, “Thermal energy storage system using phase change materials - Constant heat source,” Thermal Sci., vol. 16, pp. 1097–1104, 2012.
[49] R. S. Kumar and D. J. Krishna, “Differential scanning calorimetry (DSC) analysis of latent heat storage materials for low temperature (40–80°C) solar heating applications,” Int. J. Eng. Res. Technol., vol. 2, no. 8, pp. 429–455, 2013.
[50] K. Kant, A. Shukla, and A. Sharma, “Performance evaluation of fatty acids as phase change material for thermal energy storage,” J. Energy Storage, vol. 6, pp. 153–162, 2016.
[51] S. J. Kline and F. A. McClintock, “Describing uncertainties in single sample experiments,” Mech. Eng., vol. 75, 1953.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Digant S. Mehta, Manish K. Rathod, Jyotirmay Banerjee

This work is licensed under a Creative Commons Attribution 4.0 International License.









