Real-World Applications of Metaheuristic Algorithms: A Comprehensive Review of the State-of-the-Art
DOI:
https://doi.org/10.24237/djes.2024.18201Keywords:
Optimization, Metaheuristic, Engineering optimization, Nature inspired, Swarm-basedAbstract
Metaheuristic algorithms have gained significant acceptance in large areas of optimization, giving unique and novel solutions to complicated problems across various areas. This research dives into the wide classification of state-of-the-art real-world applications that depend on metaheuristic algorithms, acknowledging their prevalence and the diversity of real-world applications where their performances are evaluated. The major goal is to evaluate forty-eight metaheuristic algorithms from 2020 to 2024 based on the results presented in their original research articles, emphasizing their effectiveness in tackling six prevalent real-world applications. In addition, the study classifies the algorithms and compares them to determine which ones are most effective for the particular applications. The results point out the necessity to solve the actual problems using opting for a metaheuristic algorithm. Nevertheless, it becomes very obvious that no algorithm works well in all the cases pointed out, as a demand for an informed selection based on the task complexity. This research contributes to the ongoing development and application of metaheuristic algorithms in diverse practical settings by providing valuable insights into the dynamic landscape of metaheuristics.
Downloads
References
[1] V. Sharma and A. K. Tripathi, “A systematic review of meta-heuristic algorithms in IoT based application,” Array, vol. 14, p. 100164, 2022, doi: 10.1016/j.array.2022.100164.
[2] R. Rai, K. G. Dhal, A. Das, and S. Ray, “An inclusive survey on marine predators algorithm: variants and applications,” Archives of Computational Methods in Engineering, pp. 1–40, 2023, doi: 10.1007/s11831-023-09897-x.
[3] S. Kurman and S. Kisan, “An in-depth and contrasting survey of meta-heuristic approaches with classical feature selection techniques specific to cervical cancer,” Knowl Inf Syst, vol. 65, no. 5, pp. 1881–1934, 2023, doi: https://doi.org/10.1007/s10115-022-01825-y.
[4] T. Sarkar et al., “Application of bio-inspired optimization algorithms in food processing,” Curr Res Food Sci, vol. 5, pp. 432–450, 2022, doi: 10.1016/j.crfs.2022.02.006.
[5] R. Mohammed, N. K. Al-Salihi, T. A. Rashid, A. M. Aladdin, M. Mohammadi, and J. Majidpour, “Artificial Cardiac Conduction SystemSimulating Heart Function for Advanced Computational Problem Solving,” in Multi-objective Optimization Techniques, CRC Press, 2025, pp. 314–339. doi: 10.1201/9781003601555-16.
[6] M. O. Okwu and L. K. Tartibu, Metaheuristic optimization: Nature-inspired algorithms swarm and computational intelligence, theory and applications, vol. 927. Springer Nature, 2020. doi: https://doi.org/10.1007/978-3-030-61111-8.
[7] A. M. Aladdin and T. A. Rashid, “LEO: Lagrange elementary optimization,” Neural Comput Appl, 2025, doi: 10.1007/s00521-025-11225-2.
[8] R. D. Joshi, S. Waghchaware, and R. Dudhani, “Metaheuristic Algorithms and Its Application in Enterprise Data,” in Metaheuristics for Enterprise Data Intelligence, CRC Press, 2024, pp. 36–53. doi: 10.1201/9781032699806.
[9] A. A. H. Amin, A. M. Aladdin, D. O. Hasan, S. R. Mohammed-Taha, and T. A. Rashid, “Enhancing Algorithm Selection through Comprehensive Performance Evaluation: Statistical Analysis of Stochastic Algorithms,” Computation, vol. 11, no. 11, 2023, doi: 10.3390/computation11110231.
[10] H. Rezk, A. Ghani Olabi, T. Wilberforce, and E. Taha Sayed, “Metaheuristic optimization algorithms for real-world electrical and civil engineering application: A review,” Results in Engineering, vol. 23, p. 102437, 2024, doi: 10.1016/j.rineng.2024.102437.
[11] A. M. Aladdin et al., “Fitness-Dependent Optimizer for IoT Healthcare Using Adapted Parameters: A Case Study Implementation,” in Practical Artificial Intelligence for Internet of Medical Things, CRC Press, 2023, pp. 45–61. doi: 10.1201/9781003315476-3.
[12] S. W. Kareem, K. W. H. Ali, S. Askar, F. S. Xoshaba, and R. Hawezi, “Metaheuristic algorithms in optimization and its application: A review,” JAREE (Journal on Advanced Research in Electrical Engineering), vol. 6, no. 1, 2022.
[13] H. Pathipati, L. N. B. Ramisetti, D. N. Reddy, S. Pesaru, M. Balakrishna, and T. Anitha, “Optimizing Cancer Detection: Swarm Algorithms Combined with Deep Learning in Colon and Lung Cancer using Biomedical Images,” Diyala Journal of Engineering Sciences, vol. 18, no. 1, pp. 91–102, 2025, doi: 10.24237/djes.2025.18105.
[14] A. M. Aladdin and T. A. Rashid, “A New Lagrangian Problem Crossover—A Systematic Review and Meta-Analysis of Crossover Standards,” Systems, vol. 11, no. 3, 2023, doi: 10.3390/systems11030144.
[15] M. Kumari, “4 - A review on metaheuristic algorithms: Recent and future trends,” in Metaheuristics-Based Materials Optimization, V. Silberschmidt, H. Singh, S. Rajput, and A. Sharma, Eds., Woodhead Publishing, 2025, pp. 103–128. doi: https://doi.org/10.1016/B978-0-443-29162-3.00004-6.
[16] L. Abualigah et al., “5 - Teaching–learning-based optimization algorithm: analysis study and its application,” in Metaheuristic Optimization Algorithms, L. Abualigah, Ed., Morgan Kaufmann, 2024, pp. 59–71. doi: https://doi.org/10.1016/B978-0-443-13925-3.00016-9.
[17] H. Fadhil and O. D. Zinah, “Enhancing Intrusion Detection Systems Using Metaheuristic Algorithms,” Diyala Journal of Engineering Sciences, vol. 17, no. 3, pp. 15–31, doi: 10.24237/djes.2024.17302.
[18] S. Shashwat et al., “A review on bioinspired strategies for an energy-efficient built environment,” Energy Build, vol. 296, p. 113382, 2023, doi: 10.1016/j.enbuild.2023.113382.
[19] I. Matoušová, P. Trojovský, M. Dehghani, E. Trojovská, and J. Kostra, “Mother optimization algorithm: a new human-based metaheuristic approach for solving engineering optimization,” Sci Rep, vol. 13, no. 1, p. 10312, 2023, doi: 10.1038/s41598-023-37537-8.
[20] P. Trojovský and M. Dehghani, “Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems,” Biomimetics, vol. 8, no. 2, p. 149, 2023, doi: 10.3390/biomimetics8020149.
[21] E. H. Houssein, M. K. Saeed, G. Hu, and M. M. Al-Sayed, “Metaheuristics for Solving Global and Engineering Optimization Problems: Review, Applications, Open Issues and Challenges,” Archives of Computational Methods in Engineering, vol. 31, no. 8, pp. 4485–4519, 2024, doi: 10.1007/s11831-024-10168-6.
[22] S. W. Kareem, K. W. H. Ali, S. Askar, F. S. Xoshaba, and R. Hawezi, “Metaheuristic algorithms in optimization and its application: A review,” JAREE (Journal on Advanced Research in Electrical Engineering), vol. 6, no. 1, 2022, doi: https://doi.org/10.12962/jaree.v6i1.216.
[23] A. Yaqoob, N. K. Verma, and R. M. Aziz, “Metaheuristic algorithms and their applications in different fields: a comprehensive review,” Metaheuristics for Machine Learning: Algorithms and Applications, pp. 1–35, 2024, doi: https://doi.org/10.1002/9781394233953.ch1.
[24] M. Shehab et al., “A Comprehensive Review of Bat Inspired Algorithm: Variants, Applications, and Hybridization,” Archives of Computational Methods in Engineering, vol. 30, no. 2, pp. 765–797, 2023, doi: 10.1007/s11831-022-09817-5.
[25] H. Chen, L. Chenyang, M. Majdi, H. Ali Asghar, C. Yi, and Z. and Cai, “Slime mould algorithm: a comprehensive review of recent variants and applications,” Int J Syst Sci, vol. 54, no. 1, pp. 204–235, Jan. 2023, doi: 10.1080/00207721.2022.2153635.
[26] D. Moher et al., “Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement,” Syst Rev, vol. 4, pp. 1–9, 2015, doi: 10.1186/2046-4053-4-1.
[27] D. O. Hassan and B. A. Hassan, “A comprehensive systematic review of machine learning in the retail industry: classifications, limitations, opportunities, and challenges,” Neural Comput Appl, vol. 37, no. 4, pp. 2035–2070, 2025, doi: 10.1007/s00521-024-10869-w.
[28] University of Toronto Libraries, “University of Toronto Libraries.” Accessed: Dec. 12, 2023. [Online]. Available: https://onesearch.library.utoronto.ca/
[29] K. Golalipour et al., “The corona virus search optimizer for solving global and engineering optimization problems,” Alexandria Engineering Journal, vol. 78, pp. 614–642, 2023, doi: 10.1016/j.aej.2023.07.066.
[30] F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk, and W. Al-Atabany, “Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems,” Math Comput Simul, vol. 192, pp. 84–110, 2022, doi: https://doi.org/10.1016/j.matcom.2021.08.013.
[31] F. A. Hashim and A. G. Hussien, “Snake Optimizer: A novel meta-heuristic optimization algorithm,” Knowl Based Syst, vol. 242, p. 108320, 2022, doi: https://doi.org/10.1016/j.knosys.2022.108320.
[32] P. Trojovský and M. Dehghani, “A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior,” Sci Rep, vol. 13, no. 1, p. 8775, 2023, doi: 10.1038/s41598-023-35863-5.
[33] A. A. Abdelhamid et al., “Waterwheel Plant Algorithm: A Novel Metaheuristic Optimization Method,” Processes, vol. 11, no. 5, 2023, doi: 10.3390/pr11051502.
[34] M. Dehghani, G. Bektemyssova, Z. Montazeri, G. Shaikemelev, O. P. Malik, and G. Dhiman, “Lyrebird Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems,” Biomimetics, vol. 8, no. 6, p. 507, 2023, doi: 10.3390/biomimetics8060507.
[35] H. Givi, M. Dehghani, and Š. Hubálovský, “Red Panda Optimization Algorithm: An effective bio-inspired metaheuristic algorithm for solving engineering optimization problems,” IEEE Access, 2023, doi: 10.1109/ACCESS.2023.3283422.
[36] M. Dehghani, Z. Montazeri, E. Trojovská, and P. Trojovský, “Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems,” Knowl Based Syst, vol. 259, p. 110011, 2023, doi: https://doi.org/10.1016/j.knosys.2022.110011.
[37] M. A. Al-Betar, M. A. Awadallah, M. S. Braik, S. Makhadmeh, and I. A. Doush, “Elk herd optimizer: a novel nature-inspired metaheuristic algorithm,” Artif Intell Rev, vol. 57, no. 3, p. 48, 2024, doi: 10.1007/s10462-023-10680-4.
[38] J. O. Agushaka, A. E. Ezugwu, A. K. Saha, J. Pal, L. Abualigah, and S. Mirjalili, “Greater cane rat algorithm (GCRA): A nature-inspired metaheuristic for optimization problems,” Heliyon, vol. 10, no. 11, p. e31629, 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e31629.
[39] M. H. Amiri, N. Mehrabi Hashjin, M. Montazeri, S. Mirjalili, and N. Khodadadi, “Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm,” Sci Rep, vol. 14, no. 1, p. 5032, 2024, doi: 10.1038/s41598-024-54910-3.
[40] S. Fu, K. Li, H. Huang, C. Ma, Q. Fan, and Y. Zhu, “Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems,” Artif Intell Rev, vol. 57, no. 6, p. 134, 2024, doi: 10.1007/s10462-024-10716-3.
[41] Z. Benmamoun, K. Khlie, G. Bektemyssova, M. Dehghani, and Y. Gherabi, “Bobcat Optimization Algorithm: an effective bio-inspired metaheuristic algorithm for solving supply chain optimization problems,” Sci Rep, vol. 14, no. 1, p. 20099, 2024, doi: 10.1038/s41598-024-70497-1.
[42] N. Singh, M. Kaur, and E. H. Houssein, “Artificial Optimizer Algorithm for Power System Stabilizer design problem and multidisciplinary engineering applications,” Heliyon, vol. 10, no. 22, p. e40068, 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e40068.
[43] Z. Benmamoun, K. Khlie, M. Dehghani, and Y. Gherabi, “WOA: Wombat Optimization Algorithm for Solving Supply Chain Optimization Problems,” Mathematics, vol. 12, no. 7, 2024, doi: 10.3390/math12071059.
[44] D. O. Hasan, H. M. Mohammed, and Z. K. Abdul, “Griffon vultures optimization algorithm for solving optimization problems,” Expert Syst Appl, vol. 276, p. 127206, 2025, doi: https://doi.org/10.1016/j.eswa.2025.127206.
[45] H. Mohammed and T. Rashid, “FOX: a FOX-inspired optimization algorithm,” Applied Intelligence, vol. 53, no. 1, pp. 1030–1050, 2023, doi: 10.1007/s10489-022-03533-0.
[46] M. Braik, M. H. Ryalat, and H. Al-Zoubi, “A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves,” Neural Comput Appl, vol. 34, no. 1, pp. 409–455, 2022, doi: 10.1007/s00521-021-06392-x.
[47] P. Trojovský and M. Dehghani, “Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications,” Sensors, vol. 22, no. 3, p. 855, 2022, doi: 10.3390/s22030855.
[48] M. Abdel-Basset, R. Mohamed, and M. Abouhawwash, “Crested Porcupine Optimizer: A new nature-inspired metaheuristic,” Knowl Based Syst, p. 111257, 2023, doi: 10.1016/j.knosys.2023.111257.
[49] T. S. L. V Ayyarao et al., “War strategy optimization algorithm: a new effective metaheuristic algorithm for global optimization,” IEEE Access, vol. 10, pp. 25073–25105, 2022, doi: 10.1109/ACCESS.2022.3153493.
[50] M. Dehghani, E. Trojovská, and P. Trojovský, “A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process,” Sci Rep, vol. 12, no. 1, p. 9924, 2022, doi: 10.1038/s41598-022-14225-7.
[51] P. Trojovský, “A new human-based metaheuristic algorithm for solving optimization problems based on preschool education,” Sci Rep, vol. 13, no. 1, p. 21472, 2023, doi: 10.1038/s41598-023-48462-1.
[52] S. O. Oladejo, S. O. Ekwe, and S. Mirjalili, “The Hiking Optimization Algorithm: A novel human-based metaheuristic approach,” Knowl Based Syst, vol. 296, p. 111880, 2024, doi: https://doi.org/10.1016/j.knosys.2024.111880.
[53] S. Alomari et al., “Carpet Weaver Optimization: A Novel Simple and Effective Human-Inspired Metaheuristic Algorithm.,” International Journal of Intelligent Engineering & Systems, vol. 17, no. 4, 2024, doi: 10.22266/ijies2024.0831.18.
[54] M. Hubálovská, Š. Hubálovský, and P. Trojovský, “Botox Optimization Algorithm: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems,” Biomimetics, vol. 9, no. 3, 2024, doi: 10.3390/biomimetics9030137.
[55] A. T. Mozhdehi et al., “Divine Religions Algorithm: a novel social-inspired metaheuristic algorithm for engineering and continuous optimization problems,” Cluster Comput, vol. 28, no. 4, p. 253, 2025, doi: 10.1007/s10586-024-04954-x.
[56] S. Gopi and P. Mohapatra, “Learning cooking algorithm for solving global optimization problems,” Sci Rep, vol. 14, no. 1, p. 13359, 2024, doi: 10.1038/s41598-024-60821-0.
[57] E. Pira, “City councils evolution: a socio-inspired metaheuristic optimization algorithm,” J Ambient Intell Humaniz Comput, vol. 14, no. 9, pp. 12207–12256, 2023, doi: 10.1007/s12652-022-03765-5.
[58] Q. Askari, I. Younas, and M. Saeed, “Political Optimizer: A novel socio-inspired meta-heuristic for global optimization,” Knowl Based Syst, vol. 195, p. 105709, 2020, doi: 10.1016/j.knosys.2020.105709.
[59] T. M. Shami, D. Grace, A. Burr, and P. D. Mitchell, “Single candidate optimizer: a novel optimization algorithm,” Evol Intell, pp. 1–25, 2022, doi: 10.1007/s12065-022-00762-7.
[60] M. S. Abdulkarim, A. I. Mustafa, S. R. Mohammed-Taha, A. M. Aladdin, D. O. Hasan, and T. A. Rashid, “Multi-objective Optimization Vectors: Mathematical Benchmark Overview,” in Multi-objective Optimization Techniques, CRC Press, 2025, pp. 242–272. doi: 10.1201/9781003601555-13.
[61] K. Zolf, “Gold rush optimizer: a new population-based metaheuristic algorithm,” Operations Research and Decisions, vol. 33, no. 1, 2023, doi: 10.37190/ord230108.
[62] M. Dehghani, E. Trojovská, P. Trojovský, and O. P. Malik, “OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems,” Biomimetics, vol. 8, no. 6, p. 468, 2023, doi: 10.3390/biomimetics8060468.
[63] G. Z. Oztas and S. Erdem, “A penalty-based algorithm proposal for engineering optimization problems,” Neural Comput Appl, vol. 35, no. 10, pp. 7635–7658, 2023, doi: 10.1007/s00521-022-08058-8.
[64] M. Dehghani, Š. Hubálovský, and P. Trojovský, “Northern goshawk optimization: a new swarm-based algorithm for solving optimization problems,” Ieee Access, vol. 9, pp. 162059–162080, 2021, doi: 10.1109/ACCESS.2021.3133286.
[65] M. Azizi, M. Baghalzadeh Shishehgarkhaneh, M. Basiri, and R. C. Moehler, “Squid Game Optimizer (SGO): a novel metaheuristic algorithm,” Sci Rep, vol. 13, no. 1, p. 5373, 2023, doi: 10.1038/s41598-023-32465-z.
[66] M. Abdel-Basset, D. El-Shahat, M. Jameel, and M. Abouhawwash, “Exponential distribution optimizer (EDO): a novel math-inspired algorithm for global optimization and engineering problems,” Artif Intell Rev, vol. 56, no. 9, pp. 9329–9400, 2023, doi: 10.1007/s10462-023-10403-9.
[67] S. Talatahari, M. Azizi, and A. H. Gandomi, “Material generation algorithm: a novel metaheuristic algorithm for optimization of engineering problems,” Processes, vol. 9, no. 5, p. 859, 2021, doi: 10.3390/pr9050859.
[68] F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and W. Al-Atabany, “Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems,” Applied Intelligence, vol. 51, pp. 1531–1551, 2021, doi: 10.1007/s10489-020-01893-z.
[69] H. Karami, M. V. Anaraki, S. Farzin, and S. Mirjalili, “Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems,” Comput Ind Eng, vol. 156, p. 107224, 2021, doi: 10.1016/j.cie.2021.107224.
[70] M. H. Qais, H. M. Hasanien, S. Alghuwainem, and K. H. Loo, “Propagation Search Algorithm: A Physics-Based Optimizer for Engineering Applications,” Mathematics, vol. 11, no. 20, p. 4224, 2023, doi: 10.3390/math11204224.
[71] S. S. Band, S. Ardabili, A. S. Danesh, Z. Mansor, I. AlShourbaji, and A. Mosavi, “Colonial competitive evolutionary Rao algorithm for optimal engineering design,” Alexandria Engineering Journal, vol. 61, no. 12, pp. 11537–11563, 2022, doi: 10.1016/j.aej.2022.05.018.
[72] Š. Hubálovský, M. Hubálovská, and I. Matoušová, “A New Hybrid Particle Swarm Optimization–Teaching–Learning-Based Optimization for Solving Optimization Problems,” Biomimetics, vol. 9, no. 1, p. 8, 2024, doi: 10.3390/biomimetics9010008.
[73] J. Huang and H. Hu, “Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems,” J Big Data, vol. 11, no. 1, p. 3, 2024, doi: 10.1186/s40537-023-00864-8.
[74] H. N. Fakhouri, A. Ishtaiwi, S. N. Makhadmeh, M. A. Al-Betar, and M. Alkhalaileh, “Novel Hybrid Crayfish Optimization Algorithm and Self-Adaptive Differential Evolution for Solving Complex Optimization Problems,” Symmetry (Basel), vol. 16, no. 7, 2024, doi: 10.3390/sym16070927.
[75] J. Ren, H. Wei, Y. Yuan, X. Li, F. Luo, and Z. Wu, “Boosting sparrow search algorithm for multi-strategy-assist engineering optimization problems,” AIP Adv, vol. 12, no. 9, 2022, doi: 10.1063/5.0108340.
[76] Z. Li, Y. Zhou, S. Zhang, and J. Song, “Lévy-Flight Moth-Flame Algorithm for Function Optimization and Engineering Design Problems,” Math Probl Eng, vol. 2016, p. 1423930, 2016, doi: 10.1155/2016/1423930.
[77] Z. Zhang, L. Wang, and W. Zhao, New Optimization Algorithms and their Applications: Atom-Based, Ecosystem-Based and Economics-Based. Elsevier, 2021. doi: 10.1016/B978-0-323-90941-9.09993-2.
[78] R. M. Rizk-Allah and E. Elsodany, “An improved rough set strategy-based sine cosine algorithm for engineering optimization problems,” Soft comput, pp. 1–22, 2023, doi: 10.1007/s00500-023-09155-z.
[79] A. Kumar, G. Wu, M. Z. Ali, R. Mallipeddi, P. N. Suganthan, and S. Das, “A test-suite of non-convex constrained optimization problems from the real-world and some baseline results,” Swarm Evol Comput, vol. 56, p. 100693, 2020, doi: https://doi.org/10.1016/j.swevo.2020.100693.
[80] J.-F. Tsai, J. G. Carlsson, D. Ge, Y.-C. Hu, and J. Shi, “Optimization theory, methods, and applications in engineering 2013,” 2014, Hindawi. doi: 10.1155/2014/319418.
[81] S. Ravichandran, P. Manoharan, P. Jangir, and S. Selvarajan, “Resistance–capacitance optimizer: a physics-inspired population-based algorithm for numerical and industrial engineering computation problems,” Sci Rep, vol. 13, no. 1, p. 15909, 2023, doi: 10.1038/s41598-023-42969-3.
[82] D. O. Hasan, H. M. Mohammed, and Z. K. Abdul, “Modified FOX Optimizer for Solving optimization problems,” arXiv preprint arXiv:2502.20027, 2025, doi: https://doi.org/10.48550/arXiv.2502.20027.
[83] W. Zhao, L. Wang, and S. Mirjalili, “Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications,” Comput Methods Appl Mech Eng, vol. 388, p. 114194, 2022, doi: 10.1016/j.cma.2021.114194.
[84] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm,” Comput Struct, vol. 169, pp. 1–12, 2016, doi: 10.1016/j.compstruc.2016.03.001.
[85] E. H. Houssein, M. K. Saeed, G. Hu, and M. M. Al-Sayed, “Metaheuristics for Solving Global and Engineering Optimization Problems: Review, Applications, Open Issues and Challenges,” Archives of Computational Methods in Engineering, vol. 31, no. 8, pp. 4485–4519, 2024, doi: 10.1007/s11831-024-10168-6.
[86] V. Pramila, R. Kannadasan, B. J, T. Rameshkumar, M. H. Alsharif, and M.-K. Kim, “Smart grid management: Integrating hybrid intelligent algorithms for microgrid energy optimization,” Energy Reports, vol. 12, pp. 2997–3019, 2024, doi: https://doi.org/10.1016/j.egyr.2024.08.053.
[87] A. K. Ghazali, N. A. Ab. Aziz, and M. K. Hassan, “Advanced Algorithms in Battery Management Systems for Electric Vehicles: A Comprehensive Review,” Symmetry (Basel), vol. 17, no. 3, 2025, doi: 10.3390/sym17030321.
[88] S. Shao, Y. Tian, and Y. Zhang, “Deep reinforcement learning assisted surrogate model management for expensive constrained multi-objective optimization,” Swarm Evol Comput, vol. 92, p. 101817, 2025, doi: https://doi.org/10.1016/j.swevo.2024.101817.
[89] D. O. Hasan et al., “Perspectives on the Impact of E-Learning Pre-and Post-COVID-19 Pandemic—The Case of the Kurdistan Region of Iraq,” Sustainability, vol. 15, no. 5, p. 4400, 2023.
[90] K. Nałęcz-Charkiewicz, K. Charkiewicz, and R. M. Nowak, “Quantum computing in bioinformatics: a systematic review mapping,” Brief Bioinform, vol. 25, no. 5, p. bbae391, Sep. 2024, doi: 10.1093/bib/bbae391.
[91] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997, doi: 10.1109/4235.585893.
[92] A. Al-Saegh, A. Daood, and M. H. Ismail, “Dual Optimization of Deep CNN for Motor Imagery EEG Tasks Classification,” Diyala Journal of Engineering Sciences, vol. 17, no. 4, pp. 75–91, 2025, doi: 10.24237/djes.2024.17405.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dler O. Hasan, Aso Aladdin

This work is licensed under a Creative Commons Attribution 4.0 International License.